Skip to main content

Caenorhabditis elegans as a Predictive Model for Methylmercury-Induced Neurotoxicity

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

  • 822 Accesses

Abstract

Several targets and detoxifying components of methylmercury (MeHg) toxicity, including glutathione (GSH), metallothioneins (MTs), and heat shock proteins (HSPs), have been identified to date. In our most recent studies, we have used the model organism, Caenorhabditis elegans, to examine many of the unknown molecular mechanisms of MeHg neurotoxicity. While MeHg accumulated within C. elegans was shown to cause a delay in development as well as a decreased pharyngeal pumping rate, many endpoints, including nervous system morphology, were unaffected. These findings led to the hypothesis that C. elegans has unique mechanisms for protecting its nervous system from MeHg neurotoxicity. Therefore, we examined the involvement of GSH, MTs, and HSPs in MeHg toxicity in C. elegans. We found that GSH levels were altered upon MeHg exposure, a glutathione s-transferase was highly upregulated upon exposure, and the lack of MTs resulted in increased sensitivity to the toxicant. We also demonstrated that MeHg induces hormesis in C. elegans, which is most likely due, at least in part, to the involvement of glutathione transferases in MeHg toxicity. The molecular mechanisms of MeHg neuroprotection in C. elegans, which we identify in this review, may prove valuable in developing effective strategies to protect human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C. elegans :

Caenorhabditis elegans

CGC:

Caenorhabditis genetics center

Cys:

Cysteine

GFP:

Green fluorescent protein

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione transferase

gst-4:

Glutathione S-transferase 4

Hg:

Mercury

hsp-16 :

Heat shock protein 16

hsp-4 :

Heat shock protein 4

HSPs:

Heat shock proteins

LD50:

Lethal dose 50

MeHg:

Methylmercury

MT:

Metallothionein

mtl-1 :

Metallothionein 1

mtl-2 :

Metallothionein 2

RNAi:

RNA interference

References

  • Antoshechkin I, Sternberg PW. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet. 2007;8(7):518–32.

    Article  PubMed  CAS  Google Scholar 

  • Avery L, Horvitz HR. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron. 1989;3(4):473–85.

    Article  PubMed  CAS  Google Scholar 

  • Braungart E, et al. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis. 2004;1(4–5):175–83.

    Article  PubMed  CAS  Google Scholar 

  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.

    PubMed  CAS  Google Scholar 

  • Byerley RC, et al. The life cycle of the nematode Caenorhabditis elegans. Dev Biol. 1976;51(1): 23–33.

    Article  Google Scholar 

  • C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8.

    Article  Google Scholar 

  • Chalfie M, White J. The nervous system. In: Wood WB, editor. The nematode C. elegans. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1988.

    Google Scholar 

  • Chen BL, et al. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA. 2006;103(12):4723–8.

    Article  PubMed  CAS  Google Scholar 

  • Cole RD, et al. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol Appl Pharmacol. 2004;194(3):248–56.

    Article  PubMed  CAS  Google Scholar 

  • Donkin SG, Williams PL. Influence of developmental stage, salts, and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testing. Environ Toxicol Chem. 1995;14:2139–47.

    CAS  Google Scholar 

  • Glover CN, et al. Methylmercury speciation influences brain gene expression and behavior in gestationally-exposed mice pups. Toxicol Sci. 2009;110(2):389–400.

    Article  PubMed  CAS  Google Scholar 

  • Helmcke KJ, Aschner M. Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2010;248(2):156–64.

    Article  PubMed  CAS  Google Scholar 

  • Helmcke KJ, et al. Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2009;240(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  • Hobert O (2005) Specification of the nervous system. WormBook, eds The C. elegans Research Community, doi/10.1895/wormbook.1.12.1.

    Google Scholar 

  • Hope IA. Background on Caenorhabditis elegans. In: Hope IA, editor. C. elegans: a practical approach. New York: Oxford University Press; 1999. pp. 1–15.

    Google Scholar 

  • Hwang GW, Naganuma A. DNA microarray analysis of transcriptional responses of human neuroblastoma IMR-32 cells to methylmercury. J Toxicol Sci. 2006;31(5):537–8.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro H, et al. Enhancement of oxidative damage to cultured cells and Caenorhabditis elegans by mitochondrial electron transport inhibitors. IUBMB Life. 2001;51(4):263–8.

    Article  PubMed  CAS  Google Scholar 

  • Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387–98.

    Article  PubMed  CAS  Google Scholar 

  • Leung MC, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci. 2008;106(1):5–28.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, et al. Induction of chemotaxis to sodium chloride and diacetyl and thermotaxis defects by microcystin-LR exposure in nematode Caenorhabditis elegans. J Environ Sci (China). 2009;21(7):971–9.

    Article  CAS  Google Scholar 

  • National Research Council, US. Scientific frontiers in developmental toxicology and risk assessment (NRC, US). Washington: The National Academies Press; 2000.

    Google Scholar 

  • Nonet ML, et al. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci. 1998;18(1):70–80.

    PubMed  CAS  Google Scholar 

  • Olsen A, et al. Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology. 2006;7(4):221–30.

    Article  PubMed  Google Scholar 

  • Padhi BK, et al. Gene expression profiling in rat cerebellum following in utero and lactational exposure to mixtures of methylmercury, polychlorinated biphenyls and organochlorine pesticides. Toxicol Lett. 2008;176(2):93–103.

    Article  PubMed  CAS  Google Scholar 

  • Peterson RT, et al. Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology. 2008;29(3):546–55.

    Article  PubMed  CAS  Google Scholar 

  • Rand MD, et al. Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology. 2009;30(5):794–802.

    Article  PubMed  CAS  Google Scholar 

  • Roh JY, et al. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem. 2006;25(11):2946–56.

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):443–52.

    Article  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56(1):110–56.

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119.

    Article  PubMed  CAS  Google Scholar 

  • Ved R, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem. 2005;280(52):42655–68.

    Article  PubMed  CAS  Google Scholar 

  • Wang DY, Wang Y. Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol. 2008;54(3):447–53.

    Article  PubMed  CAS  Google Scholar 

  • White JG, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond. 1986;B314:1–340.

    Article  Google Scholar 

  • Williams PL, Dusenbery DB. Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health. 1988;4(4):469–78.

    PubMed  CAS  Google Scholar 

  • Wood WB. Introduction to C. elegans biology. In: Wood WB, editor. The nematode Caenorhabditis elegans. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1988.

    Google Scholar 

  • WormAtlas. E. A database of behavioral and structural anatomy. http://www.wormatlas.org.

  • WormBase. website, http://www.wormbase.org. Release WS204 date 29 Jul 2009.

  • Xu K, et al. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron. 2001;31(6):957–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, et al. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol. 2010;59(1):129–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a training grant from the NIEHS T32 ES007028 to KJH and NIEHS R01 07331 to MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Helmcke, K.J., Aschner, M. (2012). Caenorhabditis elegans as a Predictive Model for Methylmercury-Induced Neurotoxicity. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_18

Download citation

Publish with us

Policies and ethics