Skip to main content

RAMPs as Drug Targets

  • Chapter
RAMPs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 744))

Abstract

The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis C. The state of GPCR research in 2004. Nat Rev Drug Discov 2004; 3:577–626.

    Article  Google Scholar 

  2. McLatchie LM, Fraser NJ, Main MJ et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393:333–339.

    Article  PubMed  CAS  Google Scholar 

  3. Christopoulos A, Christopoulos C, Morfis M et al. Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 2003; 278:3293–3297.

    Article  PubMed  CAS  Google Scholar 

  4. Fraser NJ, Wise A, Brown J et al. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999; 55:1054–1059.

    PubMed  CAS  Google Scholar 

  5. Hay DL, Howitt SG, Conner AC et al. CL/RAMP2 and CL/RAMP3 produce pharmacologically distinct adrenomedullin receptors: a comparison of effects of adrenomedullin22-52, CGRP8-37 and BIBN4096BS. Br J Pharmacol 2003; 140:477–486.

    Article  PubMed  CAS  Google Scholar 

  6. Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther 2006; 109:173–197.

    Article  PubMed  CAS  Google Scholar 

  7. Poyner DR, Sexton PM, Marshall I et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002; 54:233–246.

    Article  PubMed  CAS  Google Scholar 

  8. Christopoulos G, Perry K, Morfis M et al. Multiple amylin receptors arise from receptor-activity-modifying-proteins interaction with the calcitonin receptor gene product. Mol Pharmacol 1999; 56:235–242.

    PubMed  CAS  Google Scholar 

  9. Muff R, Buhlmann N, Fischer AH et al. An amylin receptor is revealed following cotransfection of a calcitonin receptor with receptor activity modifying proteins-1 or-3. Endocrinology 1999; 140:2924–2927.

    Article  PubMed  CAS  Google Scholar 

  10. Bouschet T, Maritn S, Henley JM et al. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci 2005; 118:4709–4720.

    Article  PubMed  CAS  Google Scholar 

  11. Udawela M, et al. The receptor activity modifying protein family of G protein coupled receptor accessory proteins. Seminars Cell Developmental Biol 2004; 15:299–308.

    Article  CAS  Google Scholar 

  12. Sexton PM, Albiston A, Morfis M et al. Receptor activity modifying proteins. Cellular Signal 2001; 13:73–83.

    Article  CAS  Google Scholar 

  13. Takei Y, Inoue K, Ogoshi M et al. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Letters 2004; 556:53–58.

    Article  PubMed  CAS  Google Scholar 

  14. Roh J, Chang CL, Bhalla A et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 2004; 279:7264–7274.

    Article  PubMed  CAS  Google Scholar 

  15. Hay DL, Christopoulos G, Christopoulos A et al. Determinants of 1-piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS) affinity for calcitonin gene-related peptide and amylin receptors—the role of receptor activity modifying protein 1. Mol Pharmacol 2006; 70:1984–1991.

    Article  PubMed  CAS  Google Scholar 

  16. Zumpe ET, Tilakaratne N, Fraser NJ et al. Multiple RAMP domains are required for generation of amylin receptor phenotype from the calcitonin receptor gene product. Biochem Biophys Res Commun 2000; 267:368–372.

    Article  PubMed  CAS  Google Scholar 

  17. Fitzsimmons TJ, Zhao X, Wank SA. The extracellular domain of receptor activity-modifying protein 1 is sufficient for calcitonin receptor-like receptor function. J Biol Chem 2003; 278:14313–14320.

    Article  PubMed  CAS  Google Scholar 

  18. Udawela M, Christopoulos G, Tilakaratne N et al. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol Pharmacol 2006; 69:1984–1989.

    Article  PubMed  CAS  Google Scholar 

  19. Steiner S, Muff R, Gujer R et al. The transmembrane domain of receptor-activity-modifying protein 1 is essential for the functional expression of a calcitonin gene-related peptide receptor. Biochemistry 2002; 41:11398–11404.

    Article  PubMed  CAS  Google Scholar 

  20. Qi T, Christopoulos G, Bailey RJ et al. Identification of N-terminal receptor activity-modifying protein residues important for CGRP, adrenomedullin and amylin receptor function. Mol Pharmacol 2008; 74:1059–1071.

    Article  PubMed  CAS  Google Scholar 

  21. Tilakaratne N, Christopoulos G, Zumpe ET et al. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther 2000; 294:61–72.

    PubMed  CAS  Google Scholar 

  22. Moore EE, Kuestner RE, Stroop SD et al. Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 1995; 9:959–968.

    Article  PubMed  CAS  Google Scholar 

  23. Udawela M, Christopoulos G, Morfis M et al. A critical role for the short intracellular C terminus in receptor activity-modifying protein function. Mol Pharmacol 2006; 70:1750–1760.

    Article  PubMed  CAS  Google Scholar 

  24. Morfis M, Tilakaratne N, Furness SG et al. Receptor activity modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 2008; 149:5423–5431.

    Article  PubMed  CAS  Google Scholar 

  25. Prado MA, Evans-Bain B, Oliver KR et al. The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction. Peptides 2001; 22:1773–1781.

    Article  PubMed  CAS  Google Scholar 

  26. Kuwasako K, Shimekake Y, Masuda M et al. Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and Recycling. J Biol Chem 2000; 275:29602–29609.

    Article  PubMed  CAS  Google Scholar 

  27. Kuwasako K, Cao YN, Chu CP et al. Functions of the cytoplasmic tails of the human receptor activity-modifying protein components of calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 2006; 281:7205–7213.

    Article  PubMed  CAS  Google Scholar 

  28. Bomberger JM, Parameswaran N, Hall CS et al. Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem 2005; 280:9297–9307.

    Article  PubMed  CAS  Google Scholar 

  29. Phelps E, Bezouglaia O, Tetradis S et al. Parathyroid hormone induces receptor activity modifying protein-3 (RAMP3) expression primarily via 3′,5′-cyclic adenosine monophosphate signaling in osteoblasts. Calcified Tissue International 2005; 77:96–103.

    Article  PubMed  CAS  Google Scholar 

  30. Yue W, Dacic S, Sun Q et al. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res 2007; 13:4336–4344.

    Article  PubMed  CAS  Google Scholar 

  31. Dackor R, Fritz-Six KL, Smithies O et al. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J Biol Chem 2007; 282:18094–18099.

    Article  PubMed  CAS  Google Scholar 

  32. Fritz-Six KL, Dunworth WP, Li M et al. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 2008; 118:40–50.

    Article  PubMed  CAS  Google Scholar 

  33. Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A et al. The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest 2008; 118:29–39.

    Article  PubMed  CAS  Google Scholar 

  34. T sujikawa K, Yayama K, Hayashi T et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Natl Acad Sci USA 2007; 104:16702–16707.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z, Winborn CS, Marquez de Prado B et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 2007; 27:2693–2703.

    Article  PubMed  CAS  Google Scholar 

  36. Tam CW, Husmann K, Clark NC et al. Enhanced vascular responses to adrenomedullin in mice overexpressing receptor-activity-modifying protein 2. Circ Res 2006; 98:262–270.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Bell D, Smith LR et al. Differential Expression of Components of the Cardiomyocyte Adrenomedullin/Intermedin Receptor System following Blood Pressure Reduction in Nitric Oxide-Deficient Hypertension. J Pharmacol Exp Ther 2006; 316:1269–1281.

    Article  PubMed  CAS  Google Scholar 

  38. Pidasheva S, Canaff L, Simonds WF et al. Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia. Hum Mol Genet 2005; 14:1679–1690.

    Article  PubMed  CAS  Google Scholar 

  39. Leach K, Sexton PM, Christopoulos A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacological Sci 2007; 28:382–389.

    Article  CAS  Google Scholar 

  40. Kusano S, Kukimoto-Niino M, Akasaka R et al. Crystal structure of the human receptor activity-modifying protein 1 extracellular domain. Protein Sci 2008; 17:1907–1914.

    Article  PubMed  CAS  Google Scholar 

  41. Simms J, Hay DL, Wheatley M et al. Characterization of the structure of RAMP1 by mutagenesis and molecular modelling. Biophys J 2006; 91:662–669.

    Article  PubMed  CAS  Google Scholar 

  42. ter Haar E, Koth CM, Abdul-Manan N et al. Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 2010; 18:1083–1093.

    Article  PubMed  Google Scholar 

  43. Salvatore CA, Hershey JC, Corcoran HA et al. Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-Difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J?Pharmacol Exp Ther 2008; 324:416–421.

    Article  PubMed  CAS  Google Scholar 

  44. Mallee JJ, Salvatore CA, LeBourdelles B et al. Receptor activity-modifying protein 1 determines the species selectivity of nonpeptide CGRP receptor antagonists. J Biol Chem 2002; 277:14294–14298.

    Article  PubMed  CAS  Google Scholar 

  45. Doods H, Hallermayer G, Wu D et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000; 129:420–423.

    Article  PubMed  CAS  Google Scholar 

  46. Doods H, Arndt K, Rudolf K et al. CGRP antagonists: unravelling the role of CGRP in migraine. Trends Pharmacological Sci 2007; 28:580–587.

    Article  CAS  Google Scholar 

  47. Ho TW, Ferrari MD, Docick DW et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. The Lancet 2008; 372:2115–2123.

    Article  CAS  Google Scholar 

  48. Benemei S, Nicoletti P, Capone JA et al. Pain pharmacology in migraine: focus on CGRP and CGRP receptors. Neurological Sci 2007; 28:S89–S93.

    Article  Google Scholar 

  49. Hay DL, Howitt SG, Conner AC et al. A comparison of the actions of BIBN4096BS and CGRP8-37 on CGRP and adrenomedullin receptors expressed on SK-N-MC, L6, Col 29 and Rat 2 cells. Br J Pharmacol 2002; 137: 80–86.

    Article  PubMed  CAS  Google Scholar 

  50. Salvatore CA, Mallee JJ, Bell IM et al. Identification and pharmacological characterization of domains involved in binding of CGRP receptor antagonists to the calcitonin-like receptor. Biochemistry 2006; 45:1881–1887.

    Article  PubMed  CAS  Google Scholar 

  51. Pioszak AA, Xu HE. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 2008; 105:5034–5039.

    Article  PubMed  CAS  Google Scholar 

  52. Heroux M, Hogue M, Lemieux S et al. Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 2007; 282:31610–31620.

    Article  PubMed  CAS  Google Scholar 

  53. Kunz TH, Mueller-Steiner S, Schwerdtfeger K et al. Interaction of receptor-activity-modifying protein1 with tubulin. Biochimica et Biophysica Acta (BBA)—General Subjects 2007; 1770:1145–1150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie L. Hay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sexton, P.M., Poyner, D.R., Simms, J., Christopoulos, A., Hay, D.L. (2012). RAMPs as Drug Targets. In: Spielman, W.S., Parameswaran, N. (eds) RAMPs. Advances in Experimental Medicine and Biology, vol 744. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2364-5_6

Download citation

Publish with us

Policies and ethics