Psychophysiological Correlates of Flow-Experience

  • Corinna PeiferEmail author


Flow—the pleasant state of absorption of a person with an activity—has rarely been investigated from a physiological perspective. However, interest in such studies is growing fast. Only recently, researchers started to apply psychophysiological measures to study flow-experiences. In order to contribute to this ongoing research, this chapter aims to report and integrate existing theories and findings concerning the physiology of flow-experience and to stimulate further investigation.

The first part of this chapter will give an overview about existing literature explicitly dealing with the psychophysiology of flow. A theoretical psychophysiological framework is then developed on the basis of prominent stress theories. The third part discusses physiological correlates of flow, integrating existing literature on flow and related concepts such as attention and cognitive control. The chapter ends with an integrative definition of flow-experience, practical implications, and an outlook on future research perspectives.


Heart Rate Variability Skin Conductance Level Cortisol Reactivity Default Network Orbicularis Oculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Conny H. Antoni, Nicola Baumann, Stefan Engeser, Hartmut Schächinger, and my colleagues from the department of Clinical Physiology at the University of Trier for valuable discussions and / or their kind review of the manuscript.


  1. Ashby, G. F., & Casale, M. B. (2002). The cognitive neuroscience of implicit category learning. In L. Jimènez (Ed.), Attention and implicit learning (pp. 109–141). Amsterdam: John Benjamins.Google Scholar
  2. Bagchi, B. K., & Wenger, M. A. (1958). Simultaneous EEG and other recordings during some yogic practices. Electroencephalography and Clinical Neurophysiology, 10, 193.CrossRefGoogle Scholar
  3. Baijal, S., & Srinivasan, N. (2010). Theta activity and meditative states: Spectral changes during concentrative meditation. Cognitive Process, 11, 31–38.CrossRefGoogle Scholar
  4. Baumann, N., & Scheffer, D. (2010). Seeing and mastering difficulty: The role of affective change in achievement flow. Cognition and Emotion, 24, 1304–1328.CrossRefGoogle Scholar
  5. Beh, H. C. (1990). Achievement motivation, performance and cardiovascular activity. International Journal of Psychophysiology, 10, 39–45.PubMedCrossRefGoogle Scholar
  6. Benedict, C., Kern, W., Schmid, S. M., Schultes, B., Born, J., & Hallschmid, M. (2009). Early morning rise in hypothalamic-pituitary-adrenal activity: a role for maintaining the brain’s energy balance. Psychoneuroendocrinology, 34, 455–462.PubMedCrossRefGoogle Scholar
  7. Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30, 183–196.PubMedCrossRefGoogle Scholar
  8. Boucsein, W. (1992). Electrodermal activity. New York: Plenum.Google Scholar
  9. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America, 104, 11483–11488.PubMedCrossRefGoogle Scholar
  10. Brownley, K. A., Hurwitz, B. E., & Schneiderman, N. (2000). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology. New York: Cambridge University Press.Google Scholar
  11. Bruya, B. (2010a). Effortless attention: A new perspective in the cognitive science of attention and action. Cambridge, MA: MIT Press.Google Scholar
  12. Bruya, B. (2010b). Introduction. In B. Bruya (Ed.), Effortless attention. A new perspective in the cognitive science of attention and action (pp. 1–28). Cambridge: MIT Press.Google Scholar
  13. Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: Experiencing flow in work and play. San Francisco: Jossey-Bass.Google Scholar
  14. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.Google Scholar
  15. Csikszentmihalyi, M. (1993). The evolving self. A psychology for the 3rd millennium. New York: Harper Collins.Google Scholar
  16. Csikszentmihalyi, M. (1997). Finding flow. The psychology of engagement with everyday life. New York: Basic Books.Google Scholar
  17. Csikszentmihalyi, M. (1999). If we are so rich, why aren’t we happy? American Psychologist, 54, 821–827.CrossRefGoogle Scholar
  18. Das, N. N., & Gastaut, H. (1955). Variations de l’activité electrique du cerveau, du coeur et des muscles squelettiques au cours de la Méditation et de l’extase yogique [Variations in the electrical activity of the brain, heart, and skeletal muscles during yogic meditation and trance]. Electroencephalography and Clinical Neurophysiology, 6, 211–219.Google Scholar
  19. Davis, C. A., Levitan, R. D., Reid, C., Carter, J. C., Kaplan, A. S., Patte, K. A., et al. (2009). Dopamine for ‘wanting’ and opioids for ‘liking’: A comparison of obese adults with and without binge eating. Obesity, 17, 1220–1225.PubMedGoogle Scholar
  20. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 159–189). New York: Cambridge University Press.Google Scholar
  21. De Kloet, E. R., Oitzl, M. S., & Joel, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422–426.PubMedCrossRefGoogle Scholar
  22. De Manzano, Ö., Theorell, T., Harmat, L., & Ullen, F. (2010). The psychophysiology of flow during piano playing. Emotion, 10, 301–311.PubMedCrossRefGoogle Scholar
  23. Dienes, Z., & Perner, J. (1999). A theory of implicit and explicit knowledge. Behavioural and Brain Sciences, 5, 735–808.Google Scholar
  24. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness. The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.PubMedCrossRefGoogle Scholar
  25. Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13, 746–761.PubMedCrossRefGoogle Scholar
  26. Dietrich, A., & Stoll, O. (2010). Effortless attention, hypofrontality, and perfectionism. In B. Bruya (Ed.), Effortless attention (pp. 159–178). Cambridge: MIT Press.Google Scholar
  27. Edwards, J. R., & Cooper, C. L. (1988). The impacts of positive psychological states on physical health: a review and theoretical framework. Social Science & Medicine, 27, 1447–1459.CrossRefGoogle Scholar
  28. Fairclough, S. H. (2009). Fundamentals of physiological computing. Interacting with Computers, 21, 133–145.CrossRefGoogle Scholar
  29. Fridlund, A. J., & Cacippo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23, 567–589.PubMedCrossRefGoogle Scholar
  30. Fries, E., Dettenborn, L., & Kirschbaum, C. (2008). The cortisol awakening response (CAR): Facts and future directions. International Journal of Psychophysiology, 72, 67–73.PubMedCrossRefGoogle Scholar
  31. Furlong, W. (1976). The fun in fun. Psychology Today, 10(1), 35–38.Google Scholar
  32. Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., Brewer, L. E., & Scheichel, B. J. (2007). Self control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325–336.PubMedCrossRefGoogle Scholar
  33. Gangster, D. C., & Schaubroeck, J. (1991). Work stress and employee health. Journal of Management, 17, 235–271.CrossRefGoogle Scholar
  34. Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron, 50, 329–339.PubMedCrossRefGoogle Scholar
  35. Goleman, D. J. (1995). Emotional intelligence. New York: Bantam.Google Scholar
  36. Grier, R. A., Warm, J. S., Dember, W. N., Metthews, G., Galinsky, T. L., Szalma, J. L., et al. (2003). The vigilance decrement reflects limitations in effortful attention, not mindlessness. Human Factors, 45, 349–359.PubMedCrossRefGoogle Scholar
  37. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 4259–4264.PubMedCrossRefGoogle Scholar
  38. Herzog, H., Lele, V. R., Kuwert, T., Langen, K.-J., Kops, E. R., & Feinendegen, L. E. (1990). Changed pattern of regional glucose metabolism during Yoga meditative relaxation. Neuropsychobiology, 23, 182–187.PubMedCrossRefGoogle Scholar
  39. Hugdahl, K. (1995). Psychophysiology: The mind-body perspective. Cambridge, MA: Harvard University Press.Google Scholar
  40. Joseph, R. (1996). Neuropsychology, neuropsychiatry, and behavioral neurology. New York: Plenum.Google Scholar
  41. Kahneman, D. (1973). Attention and effort. Englewood Ciffs, NJ: Prentice Hall.Google Scholar
  42. Katkin, E. S. (1975). Electrodermal lability: A psychophysiological analysis of individual differences in response to stress. In I. G. Sarason & C. D. Spielberger (Eds.), Stress and anxiety (Vol. 2, pp. 141–176). Washington, DC: Aldine.Google Scholar
  43. Keller, J., Bless, H., Blomann, F., & Kleinbohl, D. (2011b). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47, 849–852.CrossRefGoogle Scholar
  44. Kivikangas, J. M. (2006). Psychophysiology of flow experience: An explorative study. Master’s thesis, University of Helsinki.Google Scholar
  45. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.PubMedCrossRefGoogle Scholar
  46. Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: Situational determinants and behavioral correlates of autonomic response patterns. In P. H. Knapp (Ed.), Expression of the emotions in man (pp. 161–196). New York: International Universities Press.Google Scholar
  47. Larsen, J. T., Berntson, G. G., Poehlmann, K. M., Ito, T. A., & Cacioppo, J. T. (2008). The psychophysiology of emotion. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), The handbook of emotions (3rd ed., pp. 180–195). New York: Guilford.Google Scholar
  48. Lazarus, R. S. (1993). From psychological stress to the emotions: A history of changing outlooks. Annual Review of Psychology, 44, 1–21.PubMedCrossRefGoogle Scholar
  49. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal and coping. New York: Springer.Google Scholar
  50. Lazarus, R. S., Kanner, A. D. & Folkman, S. (1980). Emotions: A cognitive-phenomenological analysis. In: R. Plutchnik & H. Kellerman (Eds.). Emotion. Theory, research, and experience, Vol. 1, Theories of emotion (pp. 189–217). Academic: New York.Google Scholar
  51. Lehrer, P. (2003). Applied psychophysiology: Beyond the boundaries of biofeedback. (Mending a wall, a brief history of our field, and applications to control of the muscles and cardiorespiratory systems). Applied Psychophysiology and Biofeedback, 28, 291–304.Google Scholar
  52. Lovallo, W. R., & Thomas, T. L. (2000). Stress hormones in psychophysiological research. Emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology. New York: Cambridge University Press.Google Scholar
  53. Lundberg, U. (2005). Stress hormones in health and illness: The roles of work and gender. Psychoneuroendocrinology, 30, 1017–1021.PubMedCrossRefGoogle Scholar
  54. Lynch, J. C. (1980). The functional organization of posterior parietal association cortex. Behavioral Brain Sciences, 3, 485–499.CrossRefGoogle Scholar
  55. Marr, A. J. (2001). In the zone: A biobehavioral theory of the flow experience. Athletic insight. The Online Journal of Sport Psychology. Elektronische Ressource:
  56. McEwen, B. S. & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. In N. E. Adler, M. Marmot, B. S. McEwen & J. Stewart (Eds.), Socioeconomic Status and Health in Industrial Nations: Social, Psychological and Biological Pathways (896 p). New York: Annual New York Academy of Sciences.Google Scholar
  57. Mulder, G., Mulder, L. J. M., & Veldman, J. B. P. (1985). Mental tasks as stressors. In A. Steptoe, H. Riiddel, & H. Neus (Eds.), Clinical and methodological issues in cardiovascular psychophysiology (pp. 30–44). Berlin: Springer.CrossRefGoogle Scholar
  58. Nacke, L. & Lindley, C. (2009). Affective ludology, flow and immersion in a first-person shooter: Measurement of player experience. Loading…, 3. Online resource available under
  59. Newberg, A., Alavi, A., Baime, M., Pourdehnad, M., Santanna, J., & d’Aquili, E. (2001). The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Research: Neuroimaging Section, 106, 113–122.CrossRefGoogle Scholar
  60. Ohse, A. (1997). Vom Streß zum Flow. Das Flowerlebens und Streßbewältungungstraining (FEST) [From stress to flow. Training of flow-experience and coping]. Marburg: Tectum.Google Scholar
  61. Oitzl, M. S., Champagne, D. L., van der Veen, R., & de Kloet, E. R. (2010). Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neuroscience & Biobehavioral Reviews, 34, 853–866.CrossRefGoogle Scholar
  62. Peifer, C., Schachinger, H., Baumann, N., Schulz, A. & Antoni, C. H. (2010, February). The relation of the stress-hormone cortisol and the flow-phenomenon. Paper presented at the symposium ‘The concept of Flow: Toward a Scientific Integration’, Braunschweig.Google Scholar
  63. Peifer, C. Schachinger, H. & Antoni, C. H. (2011, July). Cortisol and flow-experience – an experimental approach. Paper presented at the 2nd World Congress on Positive Psychology, Philadelphia.Google Scholar
  64. Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience and Biobehavioral Reviews, 19, 225–233.PubMedCrossRefGoogle Scholar
  65. Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93–130.PubMedCrossRefGoogle Scholar
  66. Posner, M. I., Rothbart, M. K., Rueda, M. R., & Tang, Y. (2010). Training effortless attention. In B. Bruya (Ed.), Effortless attention. A new perspective in the coginitive science of attention and action (pp. 409–424). Cambridge: MIT Press.Google Scholar
  67. Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2000). A closed-loop system for examining psychophysiological measures for adaptive task allocation. International Journal of Aviation Psychology, 10, 393–410.PubMedCrossRefGoogle Scholar
  68. Putman, P., & Roelofs, K. (2011). Effects of single cortisol administrations on human affect reviewed: Coping with stress through adaptive regulation of automatic cognitive processing. Psychoneuroendocrinology, 36, 439–448.PubMedCrossRefGoogle Scholar
  69. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Acadademy of Sciences of the United States of America, 98, 676–682.CrossRefGoogle Scholar
  70. Rani, P., Sarkar, N., Liu, C. (2005). Maintaining optimal challenge in computer games through real-time physiological feedback. Paper presented at the 11th Human–Computer Interaction International, Las Vegas, NV, USA.Google Scholar
  71. Redondo, M., & Del Valle-Inclán, F. (1992). Decrements in heart rate variability during memory search. International Journal of Psychophysiology, 13, 29–35.PubMedCrossRefGoogle Scholar
  72. Rheinberg, F. (2008). Intrinsic motivation and flow-experience. In H. Heckhausen & J. Heckhausen (Eds.), Motivation and action (pp. 323–348). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  73. Rose, R. M., Jenkins, C. D., Hurst, M., Herds, J. A., & Hall, R. P. (1982). Endocrine activity in air traffic controllers at work. II. Biological, psychological and work correlates. Psychoneuroendocrinology, 7, 113–123.Google Scholar
  74. Rueda, M., Posner, M. I., & Rothbart, M. K. (2005a). The development of executive attention: Contributions to the emergence of self-regulation. Developmental Neuropsychology, 28, 573–594.PubMedCrossRefGoogle Scholar
  75. Rueda, M., Rothbart, M. K., McCandliss, B. D., Saccamanno, L., & Posner, M. I. (2005b). Training, maturation and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the United States of America, 102, 14931–14936.PubMedCrossRefGoogle Scholar
  76. Sales, S. M. (1969). Organizational role as a risk factor in coronary disease. Administrative Science Quarterly, 14, 325–336.CrossRefGoogle Scholar
  77. Sapolski, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucodorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.CrossRefGoogle Scholar
  78. Schacter, D. L., & Bruckner, R. L. (1998). On the relationship among priming, conscious recollection, and intentional retrieval: Evidence from neuroimaging research. Neurobiology of Learning and Memory, 70, 284–303.PubMedCrossRefGoogle Scholar
  79. Schwabe, L., Oitzl, M. S., Philippsen, C., Richter, S., Bohringer, A., Wippich, W., & Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning & Memory, 14, 109–116.CrossRefGoogle Scholar
  80. Selye, H. (1983). Selye’s guide to stress research (Vol. 3). New York: Van Nostrand Reinhold.Google Scholar
  81. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663.CrossRefGoogle Scholar
  82. Siddle, D. A., Lipp, O. V., & Dall, P. (1996). The effects of task type and task requirements on the dissociation of skin conductance responses and secondary task probe reaction time. Psychophysiology, 33, 73–83.PubMedCrossRefGoogle Scholar
  83. Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., et al. (2007). Short-term meditation training improves attention and self regulation. Proceedings of the National Academy of Sciences of the United States of America, 104, 17152–17156.PubMedCrossRefGoogle Scholar
  84. Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153.PubMedCrossRefGoogle Scholar
  85. Uijtdehaage, S. H., & Thayer, J. F. (2000). Accentuated antagonism in the control of human heart rate. Clinical Autonomic Research, 10, 107–110.PubMedCrossRefGoogle Scholar
  86. Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Review Neuroscience, 10, 397–409.CrossRefGoogle Scholar
  87. Van Boxtel, A., & Jessurun, M. (1993). Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task. Psychophysiology, 30, 589–604.PubMedCrossRefGoogle Scholar
  88. Weimar, D. (2005). Stress und Flow-Erleben. Eine empirische Untersuchung zur Bedeutung von Kognitionen, Emotionen und Motivation bei Lehramtsstudierenden, Referendaren und Lehrern. [Stress and flow-experience. An empirical investigation of the meaning of cognitions, emotions an motivation in teachers and teachers-in-training]. Berlin: Logos.Google Scholar
  89. Wulf, G. (2007a). Attentional focus and motor learning: A review of 10 years of research (Target article). In E.-J. Hossner & N. Wenderoth (Eds.), Wulf on attentional focus and motor learning [Special issue]. Bewegung und Training, 1, 14.Google Scholar
  90. Wulf, G. (2007b). Attention and motor skill learning. Champaign, IL: Human Kinetics.Google Scholar
  91. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482.CrossRefGoogle Scholar

Copyright information

© Springer New York 2012

Authors and Affiliations

  1. 1.Institute of PsychologyUniversity of TrierTrierGermany

Personalised recommendations