Skip to main content

Enzymatic Saccharification of Lignocellulosic Biomass

  • Chapter
  • First Online:
Book cover Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The conversion of polymers present in the lignocellulosic biomass into fermentable sugars can be achieved through physical/chemical and enzymatic pretreatments. The microbial conversion of biomass to bioenergy will be cost-effective only if all of the components in the biomass are converted into value-added products. The combination of appropriate chemical and enzymatic conversion methods is very important to develop an effective biomass to biofuels and biorefineries conversion technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mielenz J (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  PubMed  CAS  Google Scholar 

  2. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  3. Dekker RFH, Richards GN (1976) Hemicellulases, their occurrence, purification, properties and mode of action. Adv Carbohydr Chem Biochem 32:277–352

    Article  PubMed  CAS  Google Scholar 

  4. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conv Manag 52:858–887

    Article  CAS  Google Scholar 

  5. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  6. Boateng AA, Jung HG, Adler PR (2006) Pyrolysis of energy crops including alfalfa stems, reed canarygrass and eastern gamagrass. Fuel 85:2450–2457

    Article  CAS  Google Scholar 

  7. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  8. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  9. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  PubMed  CAS  Google Scholar 

  10. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conv Manag 51:1412–1421

    Article  CAS  Google Scholar 

  11. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  PubMed  CAS  Google Scholar 

  12. Percival Zhang Y-H (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367–375

    Article  Google Scholar 

  13. Taylor G (2008) Biofuels and the biorefinery concept. Energy Pol 36:4406–4409

    Article  Google Scholar 

  14. Kamm B, Kamm M (2004) Principles of Biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  PubMed  CAS  Google Scholar 

  15. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. Biotechnology 56:1–24

    Article  CAS  Google Scholar 

  16. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  PubMed  CAS  Google Scholar 

  17. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  18. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  19. Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 96:1–11

    Article  Google Scholar 

  20. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  PubMed  CAS  Google Scholar 

  21. Hansen MAT, Kristensen JB, Felby C, Jorgensen H (2011) Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour Technol 102:2804–2811

    Article  PubMed  CAS  Google Scholar 

  22. APHA (1998) APHA, Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC.

    Google Scholar 

  23. Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403

    Article  PubMed  CAS  Google Scholar 

  24. Tuohy MG, Murray PG, Gilleran CT, Collins CM, Reen FJ, McLoughlin L et al (2007). Talaromyces emersonii enzyme systems. Patent WO/2007/091231

    Google Scholar 

  25. Voutilainen SP, Murray PG, Tuohy MG, Koivula A (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23:69–79

    Article  PubMed  CAS  Google Scholar 

  26. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  27. Bailey MJ, Biely P, Poutanen K (1992) Inter laboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  28. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  29. Murray PG, Collins C, Grassick A, Penttila M, Saloheimo M, Tuohy MG (2004) Expression in Trichoderma reesei and characterization of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248–257

    Article  PubMed  CAS  Google Scholar 

  30. Tuohy MG, Puls J, Claeyssens M, Vrsanska M, Coughlan MP (1993) The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl β-D-xylosides and unsubstituted xylans. Biochem J 290:515–523

    PubMed  CAS  Google Scholar 

  31. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  32. Gilleran CT, Hernon AT, Murray PG, Tuohy MG (2010) Induction of enzyme cocktails by low cost carbon sources for production of monosaccharide-rich syrups from plant materials. BioRes 5:634–649

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manimaran Ayyachamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ayyachamy, M., Gupta, V.K., Cliffe, F.E., Tuohy, M.G. (2013). Enzymatic Saccharification of Lignocellulosic Biomass. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_44

Download citation

Publish with us

Policies and ethics