Skip to main content

Detection and Identification of Fungal Microbial Volatile Organic Compounds by HS-SPME-GC–MS

  • Chapter
  • First Online:
Book cover Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

A method based on solid phase microextraction coupled to gas chromatography–mass spectrometry (GC–MS) for the detection and identification of microbial volatile organic compounds (MVOCs) in the headspace of filamentous fungi is presented. MVOCs are identified by comparison of mass spectra and linear temperature programmed retention indices (LTPRIs) with database entries and LTPRIs published in literature. The presented method enables the monitoring of the formation of volatile metabolites for defined time intervals during cultivation of the investigated fungus. The experimental procedure is exemplified with Fusarium graminearum and Trichoderma atroviride but can also be used to detect, identify and profile MVOCs produced by other filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  PubMed  CAS  Google Scholar 

  2. Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fung Genet Biol 27:209–217

    Article  Google Scholar 

  3. Korpi A, Järnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  PubMed  CAS  Google Scholar 

  4. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  5. Magan N, Evans P (2000) Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J Stored Prod Res 36:319–340

    Article  PubMed  CAS  Google Scholar 

  6. Nemčovič M, Jakubíková L, Víden I, Vladimír F (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    Article  PubMed  Google Scholar 

  7. Keszler À, Forgács E, Kótai L (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid phase extraction and GC/MS. J Chromatogr Sci 38:421–424

    PubMed  CAS  Google Scholar 

  8. Larsen TO, Frisvad CF (1995) Comparison of different methods for collection of volatile chemical markers from fungi. J Microbiol Methods 24:135–144

    Article  CAS  Google Scholar 

  9. Wheatley R, Hackett C, Bruce A, Kundzewicz A (1997) Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. Int Biodeter Biodegr 39:199–205

    Article  CAS  Google Scholar 

  10. Meruva NK, Penn JM, Farthing DE (2004) Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry. J Ind Microbiol Biotechnol 31:482–488

    Article  PubMed  CAS  Google Scholar 

  11. Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171

    Article  PubMed  CAS  Google Scholar 

  12. Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121

    Article  PubMed  CAS  Google Scholar 

  13. Demyttenaere JCR, Moriña RM, De Kimpe N, Sandra P (2004) Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A 1027:147–154

    Article  PubMed  CAS  Google Scholar 

  14. Van Lancker F, Adams A, Delmulle B, De Saeger S, Moretti A, Van Peteghem C et al (2008) Use of headspace SPME-GC–MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10:1127–1133

    Article  PubMed  Google Scholar 

  15. Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  PubMed  CAS  Google Scholar 

  16. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  17. Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    Article  PubMed  Google Scholar 

  18. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781

    Article  CAS  Google Scholar 

  19. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81:3429–3439

    Article  PubMed  CAS  Google Scholar 

  20. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC–MS. J Microbiol Methods 81:187–193

    Article  PubMed  CAS  Google Scholar 

  21. Van Den Dool H, Kratz P (1963) A generalization of the retention index system including linear temperature programd gas–liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  22. Lu H, Dunn BD, Shen H, Kell DB, Liang Y (2008) Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27:215–227

    Article  CAS  Google Scholar 

  23. Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN (2007) Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem 79:966–973

    Article  PubMed  CAS  Google Scholar 

  24. NIST Mass Spec Data Center, Stein SE (2011) Retention indices. In: Linstrom PJ, Mallard WG (eds). NIST Chemistry WebBook. NIST Standard Reference Database Number 69. Gaithersburg, MD: National Institute of Standards and Technology; 2011: 20899, http://webbook.nist.gov (retrieved April 27, 2011)

Download references

Acknowledgement

The financial support by the Austrian Science Fund (FWF projects F3702 and F3706) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kluger, B., Zeilinger, S., Wiesenberger, G., Schöfbeck, D., Schuhmacher, R. (2013). Detection and Identification of Fungal Microbial Volatile Organic Compounds by HS-SPME-GC–MS. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_42

Download citation

Publish with us

Policies and ethics