Skip to main content

Semi-Nested PCR Approach to Amplify Large 18S rRNA Gene Fragments for PCR-DGGE Analysis of Soil Fungal Communities

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Denaturing gradient gel electrophoresis (DGGE) of 18S rRNA gene fragments PCR-amplified from total community DNA is a powerful tool for the parallel comparative analysis of environmental fungal communities. The 18S rRNA gene has the advantages of universality, high phylogenetic information content, and a large number of sequences in the data banks. The comparative analysis of soil fungal communities from large numbers of samples by PCR-DGGE requires consistent amplification and separation efficiency, as achieved by the following semi-nested PCR-DGGE protocol based on two-step PCR of 1,650 bp rRNA gene fragments from bulk soil DNA and their separation in DGGE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  2. Schwarzenbach KA (2008) Monitoring soil fungal communities structures and specific fungal biocontrol strains for ecological effects and fate studies used for risk assessment. Dissertation. Swiss Federal Institute of Technology, Switzerland

    Google Scholar 

  3. Anderson IC, Cairney JGW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(6):769–779

    Article  PubMed  CAS  Google Scholar 

  4. Bidartondo MI, Gardes M (2005) Fungal diversity in molecular terms: profiling, identification, and quantification in the environment. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem, 3rd edn. CRC Press, New York, pp 215–239

    Chapter  Google Scholar 

  5. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  6. Tehler A, Little DP, Farris JS (2003) The full-length phylogenetic tree from 1551 ribosomal sequences of chitinous fungi, Fungi. Mycol Res 107(8):901–916

    Article  PubMed  CAS  Google Scholar 

  7. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  8. Vainio EJI, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 19:6823–6831

    Google Scholar 

  9. Bridge PD, Spooner BM, Roberts PJ (2005) The impact of molecular data in fungal systematics. Adv Bot Res 42:33–67

    Article  CAS  Google Scholar 

  10. Hagn A, Geue H, Pritsch K, Schloter M (2002) Assessment of fungal diversity and community structure in agricultural used soils. Recent Res Dev Microbiol 6:551–569

    CAS  Google Scholar 

  11. Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5(11):1121–1132

    Article  PubMed  Google Scholar 

  12. Kowalchuk GA (1999) New perspectives towards analysing fungal communities in terrestrial environments. Curr Opin Biotechnol 10:247–251

    Article  PubMed  CAS  Google Scholar 

  13. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendonça-Hagler L et al (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69: 3758–3766

    Article  PubMed  CAS  Google Scholar 

  14. Oros-Sichler M, König M, Smalla K. Polyphasic approach reveals comparable results obtained with different methods and limitations of using large 18S rRNA gene fragments in the analysis of soil fungal communities (in preparation)

    Google Scholar 

  15. Meincke R, Weinert N, Radl V, Schloter M, Smalla K, Berg G (2010) Development of a molecular approach to describe the composition of Trichoderma communities. J Microbiol Methods 80:63–69

    Article  PubMed  CAS  Google Scholar 

  16. Pennanen T, Paavolainen L, Hantula J (2001) Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol Biochem 33:697–699

    Article  CAS  Google Scholar 

  17. Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A et al (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413

    Article  PubMed  Google Scholar 

  18. Oros-Sichler M, Gomes NCM, Neuber G, Smalla K (2006) A new semi-nested PCR protocol to amplify large 18S rDNA fragments for the PCR-DGGE analysis of soil fungal communities. J Microbiol Methods 65:63–75

    Article  PubMed  CAS  Google Scholar 

  19. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

  20. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    PubMed  CAS  Google Scholar 

  21. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    PubMed  CAS  Google Scholar 

  22. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  23. Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809

    Article  PubMed  CAS  Google Scholar 

  24. Castle D, Kirchman DL (2004) Composition of ­estuarine bacterial communities assessed by denaturing gradient gel electrophoresis and fluorescence in situ hybridisation. Limnol Oceanogr Methods 2:303–314

    Article  Google Scholar 

  25. Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226(2):179–188

    Article  CAS  Google Scholar 

  26. Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  27. Van Elsas JD, Frois Duarte G, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    Article  PubMed  Google Scholar 

  28. Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P et al (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  PubMed  CAS  Google Scholar 

  29. Oros-Sichler M, König M, Smalla K. Variability of fungal communities associated with field-grown sugar beet as revealed by molecular and statistical methods (in preparation).

    Google Scholar 

  30. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  31. Dematheis F, Smalla K. Dominant gut associated microorganisms in Diabrotica virgifera virgifera LeConte are not influences by the soil type (in preparation)

    Google Scholar 

  32. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implication for molecular species identification. Evol Bioinform 4: 193–201

    Google Scholar 

  33. Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M et al (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75(12):3859–3865

    Article  PubMed  CAS  Google Scholar 

  34. Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72(2):1118–1128

    Article  PubMed  CAS  Google Scholar 

  35. Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  PubMed  CAS  Google Scholar 

  36. Dematheis F, Smalla K. (2011) Study of fungal endophytes in plant roots versus rhizosphere and soil fungal communities. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant associated microbes laboratory manual. Part B: Fungi. BioBien Innovations, Finland

    Google Scholar 

  37. Oros-Sichler M, Costa R, Heuer H, Smalla K (2007) Molecular fingerprinting techniques to analyse soil microbial communities. In: Van Elsas JD, Jansson J, Trevors J (eds) Modern soil microbiology, 2nd edn. CRC Press, Boca Raton, FL, pp 355–386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelia Smalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oros-Sichler, M., Smalla, K. (2013). Semi-Nested PCR Approach to Amplify Large 18S rRNA Gene Fragments for PCR-DGGE Analysis of Soil Fungal Communities. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_23

Download citation

Publish with us

Policies and ethics