Neurophysiology of Attention and Memory Processing

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 45)

Abstract

The “standard cocktail party” description of hearing voices in a crowded environment and being able to tune in to a conversation in which the person quickly identifies his or her name being mentioned may seem simple on the surface because people and animals can be conditioned to respond to important signals. However, Cherry’s 1953 cocktail party example is compelling and often used because it invokes many processes ubiquitous to auditory processing, such as frequency encoding and stream segregation to attention and memory. One must remember the sound of his or her own name and be able to separate that specific sound from the other sounds that are translated into background noise in reference to the attended source. Responses to well-known signals, such as names, are the product of experience-induced plasticity located many places along the auditory pathway. This translation into the unique processing of a specific stimulus is an example of long-term memory in the auditory system. This evoked response to names is not only an example of long-term memory in the auditory system, but it also engenders attention to the conversation where it originated, bringing in working and short-term memory as well. The following sections discuss what is known of the cortical processing related to auditory attention and memory.

Keywords

A1 Auditory cortex Delayed matching-to-sample Habituation Lateral intraparietal area Medial geniculate body Monkey • Neural plasticity Non-human primate Prefrontal cortex Short-term memory Stimulus-specific adaptation Superior colliculus Superior temporal gyrus Working memory 

Abbreviations

AC

auditory cortex

BF

best frequency

CF

characteristic frequency

CS

conditioned stimulus

DMTS

delayed matching-to-sample

dTP

dorsal temporal pole

ERP

event-related potential

ISI

interstimulus interval

LED

light-emitting diode

ITC

inferior temporal cortex

LFP

local field potential

LIP

lateral intraparietal

MGB

medial geniculate body

PETH

perievent time histogram

PFC

prefrontal cortex

PST

peristimulus time

SC

superior colliculus

SOA

stimulus onset asynchrony

STG

superior temporal gyrus

STRF

spectrotemporal receptive field

TORCS

temporally orthogonal ripple combinations

TRN

thalamic reticular nucleus

vPFC

ventrolateral PFC

WM

working memory

Notes

Acknowledgments

We thank Amy Opheim, Chi-wing Ng, and Ryan Opheim for assisting with the manuscript preparation. A. Poremba is supported by NIH, NIDCD, DC0007156.

References

  1. Artchakov, D., Tikhonravov, D., Vuontela, V., Linnankoski, I., Korvenoia, A., & Carlson, S. (2007). Processing of auditory and visual location information in the monkey prefrontal cortex. Experimental Brain Research, 180(3), 469–479.Google Scholar
  2. Artchakov, D., Tikhonravov, D., Ma, Y., Neuvonen, T., Linnankoski, I., & Carlson, S. (2009). Distracters impair and create working memory-related neuronal activity in the prefrontal cortex. Cerebral Cortex, 19(11), 2680–2689.PubMedGoogle Scholar
  3. Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61(3), 467–480.PubMedGoogle Scholar
  4. Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.PubMedGoogle Scholar
  5. Bakin, J. S., South, D. A., & Weinberger, N. M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behavioral Neuroscience, 110(5), 905–913.PubMedGoogle Scholar
  6. Barbas, H., & Mesulam, M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey. Journal of Comparative Neurology, 200(3), 407–431.PubMedGoogle Scholar
  7. Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 286(3), 356–375.Google Scholar
  8. Bartlett, E. L., & Wang, X. (2005). Long-lasting modulation by stimulus context in primate auditory cortex. Journal of Neurophysiology, 94(1), 83–104.PubMedGoogle Scholar
  9. Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X., & Merzenich, M. M. (2003). Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the USA, 100(19), 11070–11075.PubMedGoogle Scholar
  10. Benson, D. A., & Hienz, R. D. (1978). Single-unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Research, 159(2), 307–320.PubMedGoogle Scholar
  11. Blake, D. T., Strata, F., Churchland, A. K., & Merzenich, M. M. (2002). Neural correlates of instrumental learning in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 99(15), 10114–10119.Google Scholar
  12. Bodner, M., Kroger, J., & Fuster, J. M. (1996). Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport, 7(12), 1905–1908.PubMedGoogle Scholar
  13. Bon, L., & Lucchetti, C. (2006). Auditory environmental cells and visual fixation effect in area 8B of macaque monkey. Experimental Brain Research, 168(3), 441–449.Google Scholar
  14. Brechmann, A., Gaschler-Markefski, B., Sohr, M., Yoneda, K., Kaulisch, T., & Scheich, H. (2007). Working memory specific activity in auditory cortex: Potential correlates of sequential processing and maintenance. Cerebral Cortex, 17(11), 2544–2552.PubMedGoogle Scholar
  15. Brosch, M., & Schreiner, C. E. (1997). Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 77(2), 923–943.PubMedGoogle Scholar
  16. Brosch, M., Schulz, A., & Scheich, H. (1999). Processing of sound sequences in macaque auditory cortex: Response enhancement. Journal of Neurophysiology, 82(3), 1542–1559.PubMedGoogle Scholar
  17. Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 6797–6806.PubMedGoogle Scholar
  18. Buffalo, E. A., Ramus, S. J., Clark, R. E., Teng, E., Squire, L. R., & Zola, S. M. (1999). Dissociation between the effects of damage to perirhinal cortex and area TE. Learning and Memory, 6(6), 572–599.PubMedGoogle Scholar
  19. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979.Google Scholar
  20. Cohen, Y. E. (2009). Multimodal activity in the parietal cortex. Hearing Research, 258(1–2), 100–105.PubMedGoogle Scholar
  21. Cohen, Y. E., Cohen, I. S., & Gifford, G. W., III. (2004). Modulation of LIP activity by predictive auditory and visual cues. Cerebral Cortex, 14(12), 1287–1301.PubMedGoogle Scholar
  22. Cohen, Y. E., Russ, B. E., & Gifford, G. W., III. (2005). Auditory processing in the posterior parietal cortex. Behavioral and Cognitive Neuroscience Review, 4(3), 218–231.Google Scholar
  23. Colombo, M., & D’Amato, M. R. (1986). A comparison of visual and auditory short-term memory in monkeys (Cebus apella). Quarterly Journal of Experimental Psychology B, 38(4), 425–448.Google Scholar
  24. Colombo, M., D’Amato, M. R., Rodman, H. R., & Gross, C. G. (1990). Auditory association cortex lesions impair auditory short-term memory in monkeys. Science, 247(4940), 336–338.PubMedGoogle Scholar
  25. Colombo, M., Rodman, H. R., & Gross, C. G. (1996). The effects of superior temporal cortex lesions on the processing and retention of auditory information in monkeys (Cebus apella). Journal of Neuroscience, 16(14), 4501–4517.PubMedGoogle Scholar
  26. Constantinidis, C., & Procyk, E. (2004). The primate working memory networks. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 444–465.Google Scholar
  27. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6(1), 39–49.PubMedGoogle Scholar
  28. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedGoogle Scholar
  29. Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357–360.PubMedGoogle Scholar
  30. Durif, C., Jouffrais, C., & Rouiller, E. M. (2003). Single-unit responses in the auditory cortex of monkeys performing a conditional acousticomotor task. Experimental Brain Research, 153(4), 614–627.Google Scholar
  31. Edeline, J. M. (1999). Learning-induced physiological plasticity in the thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57(2), 165–224.PubMedGoogle Scholar
  32. Edeline, J. M., & Weinberger, N. M. (1991a). Subcortical adaptive filtering in the auditory system: Associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience, 105(1), 154–175.PubMedGoogle Scholar
  33. Edeline, J. M., & Weinberger, N. M. (1991b). Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body. Behavioral Neuroscience, 105(5), 618–639.PubMedGoogle Scholar
  34. Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107(4), 539–551.PubMedGoogle Scholar
  35. Evans, E. F., & Whitfield, I. C. (1964). Classification of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat. Journal of Physiology, 171(3), 476–493.PubMedGoogle Scholar
  36. Fritz, J. B., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223.PubMedGoogle Scholar
  37. Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005a). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25(33), 7623–7635.PubMedGoogle Scholar
  38. Fritz, J. B., Mishkin, M., & Saunders, R. C. (2005b). In search of an auditory engram. Proceedings of the National Academy of Sciences of the USA, 102(26), 9359–9364.PubMedGoogle Scholar
  39. Fritz, J. B., Shamma, S., & Elhilali, M. (2005c). One click, two clicks: The past shapes the future in auditory cortex. Neuron, 47(3), 325–327.PubMedGoogle Scholar
  40. Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229(1–2), 186–203.PubMedGoogle Scholar
  41. Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13(8), 1011–1019.PubMedGoogle Scholar
  42. Fuster, J. M. (2008). Overview of prefrontal functions: The temporal organization of behavior. In J. M. Fuster, The prefrontal cortex (pp. 333–385). Amsterdam; Boston: Academic Press/Elsevier.Google Scholar
  43. Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(997), 652–654.PubMedGoogle Scholar
  44. Fuster, J. M., & Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Research, 61, 79–91.PubMedGoogle Scholar
  45. Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77(3), 679–694.PubMedGoogle Scholar
  46. Fuster, J. M., Bodner, M., & Kroger, J. K. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405(6784), 347–351.PubMedGoogle Scholar
  47. Galván, V. V., & Weinberger, N. M. (2002). Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology of Learning and Memory, 77(1), 78–108.PubMedGoogle Scholar
  48. Gibson, J. R., & Maunsell, J. H. (1997). Sensory modality specificity of neural activity related to memory in visual cortex. Journal of Neurophysiology, 78(3), 1263–1275.PubMedGoogle Scholar
  49. Gifford, G. W., III, & Cohen, Y. E. (2004). Effect of a central fixation light on auditory spatial responses in area LIP. Journal of Neurophysiology, 91(6), 2929–2933.PubMedGoogle Scholar
  50. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.PubMedGoogle Scholar
  51. Gonzalez-Lima, F., & Scheich, H. (1986). Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behavioural Brain Research, 20(3), 281–293.PubMedGoogle Scholar
  52. Gottlieb, Y., Vaadia, E., & Abeles, M. (1989). Single unit activity in the auditory cortex of a monkey performing a short term memory task. Experimental Brain Research, 74(1), 139–148.Google Scholar
  53. Grant, S. J., Aston-Jones, G., & Redmond, D. E., Jr. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 21(3), 401–410.PubMedGoogle Scholar
  54. Guinan, J. J., Jr. (2010). Cochlear efferent innervation and function. Current Opinion in Otolaryngology & Head and Neck Surgery, 18(5), 447–453.Google Scholar
  55. Hackett, T. A. (2008). Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology, 19(10), 774–779.PubMedGoogle Scholar
  56. Harley, C. W. (2004). Norepinephrine and dopamine as learning signals. Neural Plasticity, 11(3–4), 191–204.PubMedGoogle Scholar
  57. Hocherman, S., & Gilat, E. (1981). Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. Journal of Neurophysiology, 45(6), 987–997.PubMedGoogle Scholar
  58. Hocherman, S., Benson, D. A., Goldstein, M. H., Jr., Heffner, H. E., & Hienz, R. D. (1976). Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Research, 117(1), 51–68.PubMedGoogle Scholar
  59. Hromádka, T., & Zador, A. M. (2007). Toward the mechanisms of auditory attention. Hearing Research, 229(1–2), 180–185.PubMedGoogle Scholar
  60. Hubel, D. H. (1959). Single unit activity in striate cortex of unrestrained cats. Journal of Physiology, 147, 226–238.PubMedGoogle Scholar
  61. Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., & Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the USA, 101(17), 6809–6814.PubMedGoogle Scholar
  62. Jääskeläinen, I. P., Ahveninen, J., Belliveau, J. W., Raij, T., & Sams, M. (2007). Short-term plasticity in auditory cognition. Trends in Neurosciences, 30(12), 653–961.PubMedGoogle Scholar
  63. James, W. (1890). Principles of psychology. New York: Henry Holt and Co.Google Scholar
  64. Joseph, J. P., & Barone, P. (1987). Prefrontal unit activity during a delayed oculomotor task in the monkey. Experimental Brain Research, 67(3), 460–468.Google Scholar
  65. Kaas, J. H., & Hackett, T. A. (1999). ‘What’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 2(12), 1045–1047.PubMedGoogle Scholar
  66. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1(5), 411–416.PubMedGoogle Scholar
  67. Kikuchi-Yorioka, Y., & Sawaguchi, T. (2000). Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nature Neuroscience, 3(11), 1075–1076.PubMedGoogle Scholar
  68. King, C., McGee, T., Rubel, E. W., Nicol, T., & Kraus, N. (1995). Acoustic features and acoustic changes are represented by different central pathways. Hearing Research, 85(1–2), 45–52.PubMedGoogle Scholar
  69. Kitzes, L. M., & Doherty, D. (1994). Influence of callosal activity on units in the auditory cortex of ferret (Mustela putorius). Journal of Neurophysiology, 71(5), 1740–1751.PubMedGoogle Scholar
  70. Knudsen, E. I. (2007). Fundamental components of attention. Annual Review of Neuroscience, 30, 57–78.PubMedGoogle Scholar
  71. Kojima, S. (1985). Auditory short-term memory in the Japanese monkey. International Journal of Neuroscience, 25(3–4), 255–262.PubMedGoogle Scholar
  72. Komura, Y., Tamura, R., Uwano, T., Nishijo, H., & Ono, T. (2005). Auditory thalamus integrates visual inputs into behavioral gains. Nature Neuroscience, 8(9), 1203–1209.PubMedGoogle Scholar
  73. Kondo, H., Saleem, K. S., & Price, J. L. (2003). Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. The Journal of Comparative Neurology, 465(4), 499–523.PubMedGoogle Scholar
  74. Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72(3), 1270–1277.PubMedGoogle Scholar
  75. Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64(3), 419–430.PubMedGoogle Scholar
  76. Lee, J. H., Russ, B. E., Orr, L. E., & Cohen, Y. E. (2009). Prefrontal activity predicts monkeys’ decisions during an auditory category task. Frontiers in Integrative Neuroscience, 3(16), 1–12.Google Scholar
  77. Lemus, L., Hernández, A., & Romo, R. (2009a). Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proceedings of the National Academy of Sciences of the USA, 106(23), 9471–9476.PubMedGoogle Scholar
  78. Lemus, L., Hernández, A., & Romo, R. (2009b). Neural encoding of auditory discrimination in ventral premotor cortex. Proceedings of the National Academy of Sciences of the USA, 106(34), 14640–14645.PubMedGoogle Scholar
  79. Lomber, S. G., Payne, B. R., & Cornwell, P. (2001). Role of the superior colliculus in analyses of space: Superficial and intermediate layer contributions to visual orienting, auditory orienting, and visuospatial discriminations during unilateral and bilateral deactivations. Journal of Comparative Neurology, 441(1), 44–57.PubMedGoogle Scholar
  80. Lu, Z. L., Williamson, S. J., & Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science, 258(5088), 1668–1670.PubMedGoogle Scholar
  81. Lucchetti, C., Lanzilotto, M., & Bon, L. (2008). Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: A premotor ear-eye field (PEEF). Experimental Brain Research, 186(1), 131–141.Google Scholar
  82. Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242(3), 425–458.PubMedGoogle Scholar
  83. Mazzoni, P., Bracewell, R. M., Barash, S., & Andersen, R. A. (1996). Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. Journal of Neurophysiology, 75(3), 1233–1241.PubMedGoogle Scholar
  84. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Reviews of Neuroscience, 24, 167–202.Google Scholar
  85. Miller, E. K., & Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory. Science, 263(5146), 520–522.PubMedGoogle Scholar
  86. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.PubMedGoogle Scholar
  87. Miller, J. M., Sutton, D., Pfingst, B., Ryan, A., Beaton, R., & Gourevitch, G. (1972). Single cell activity in the auditory cortex of Rhesus monkeys: Behavioral dependency. Science, 177(47), 449–451.PubMedGoogle Scholar
  88. Miller, J. M., Dobie, R. A., Pfingst, B. E., & Hienz, R. D. (1980). Electrophysiologic studies of the auditory cortex in the awake monkey. American Journal of Otolaryngology, 1(2), 119–130.PubMedGoogle Scholar
  89. Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273(5660), 297–298.PubMedGoogle Scholar
  90. Mishkin, M., & Delacour, J. (1975). An analysis of short-term visual memory in the monkey. Journal of Experimental Psychology: Animal Behavior Processes, 1(4), 326–334.PubMedGoogle Scholar
  91. Morris, J. S., Friston, K. J., & Dolan, R. J. (1998). Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1397), 649–657.PubMedGoogle Scholar
  92. Murray, E. A., & Mishkin, M. (1998). Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. Journal of Neuroscience, 18(16), 6568–6582.PubMedGoogle Scholar
  93. Neff, W., Diamond, I., & Cassedey, J. (1975). Behavioural studies of auditory discrimination: Central nervous system. In W. D. Keider & D. Neff (Eds.), Handbook of sensory physiology, Vol. V/2 (pp. 307–400). New York: Springer-Verlag.Google Scholar
  94. Ng, C. W. (2011). Behavioral and neural correlates of auditory encoding and memory functions in rhesus macaques. Doctoral dissertation. Retrieved from ProQuest Dissertations and Theses. (879629871).Google Scholar
  95. Niwa, M., Johnson, J. S., Marshall, E. A., O’Connor, K. N., & Sutter, M. L. (2009). Decision- and state-related activity in primary auditory cortex (A1) of rhesus macaques performing amplitude modulation (AM) discrimination [Abstract]. Society for Neuroscience Abstracts, 556, 2.Google Scholar
  96. Orr, L. E., Russ, B. E., & Cohen, Y. E. (2008). Disruption of decision making capacities in the rhesus macaque by prefrontal cortex TMS [Abstract]. Society for Neuroscience Abstracts, 875, 24.Google Scholar
  97. Overman, W. H., Jr., & Doty, R. W. (1980). Prolonged visual memory in macaques and man. Neuroscience, 5(11), 1825–1831.PubMedGoogle Scholar
  98. Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12(5), 646–654.PubMedGoogle Scholar
  99. Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.PubMedGoogle Scholar
  100. Pérez-González, D., Malmierca, M. S., & Covey, E. (2005). Novelty detector neurons in the mammalian auditory midbrain. European Journal of Neuroscience, 22(11), 2879–2885.PubMedGoogle Scholar
  101. Plakke, B. (2010). Auditory working memory: Contributions of lateral prefrontal cortex and acetylcholine in non-human primates. Doctoral dissertation. Retrieved from ProQuest Dissertations and Theses (880271144).Google Scholar
  102. Plakke, B., Ng, C. W., & Poremba, A. (2008). Scopolamine impairs auditory delayed matching-to-sample performance in monkeys. Neuroscience Letters, 438(1), 126–130.PubMedGoogle Scholar
  103. Pollack, G. S. (1988). Selective attention in an insect auditory neuron. Journal of Neuroscience, 8(7), 2635–2639.PubMedGoogle Scholar
  104. Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 4970–4982.PubMedGoogle Scholar
  105. Poremba, A., & Mishkin, M. (2007). Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hearing Research, 229(1–2), 14–23.PubMedGoogle Scholar
  106. Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.PubMedGoogle Scholar
  107. Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427(6973), 448–451.PubMedGoogle Scholar
  108. Rainer, G., Rao, S. C., & Miller, E. K. (1999). Prospective coding for objects in primate prefrontal cortex. Journal of Neuroscience, 19(13), 5493–5505.PubMedGoogle Scholar
  109. Rämä, P. (2008). Domain-dependent activation during spatial and nonspatial auditory working memory. Cognitive Processing, 9(1), 29–34.PubMedGoogle Scholar
  110. Rämä, P., Poremba, A., Sala, J. B., Yee, L., Malloy, M., Mishkin, M., & Courtney, S. M. (2004). Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex, 14(7), 768–780.PubMedGoogle Scholar
  111. Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97(22), 11800–11806.PubMedGoogle Scholar
  112. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.PubMedGoogle Scholar
  113. Romanski, L. M., & Averbeck, B. B. (2009). The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Reviews of Neuroscience, 32, 315–346.Google Scholar
  114. Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience 5(1), 15–16.PubMedGoogle Scholar
  115. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.PubMedGoogle Scholar
  116. Russ, B. E., Orr, L. E., & Cohen, Y. E. (2008). Prefrontal neurons predict choices during an auditory same-different task. Current Biology, 18(19), 1483–1488.PubMedGoogle Scholar
  117. Sakurai, Y. (1990). Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behavioral Neuroscience, 104(6), 856–868.PubMedGoogle Scholar
  118. Sakurai, Y. (1994). Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. Journal of Neuroscience, 14(5 Pt 1), 2606–2623.PubMedGoogle Scholar
  119. Scheich, H. (2011). Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concepts. Hearing Research, 271(1–2), 3–15.PubMedGoogle Scholar
  120. Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 1082–1108.PubMedGoogle Scholar
  121. Shamma, S. A., Elhilali, M., & Micheyl, C. (2010). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.PubMedGoogle Scholar
  122. Shea, S. D., & Margoliash, D. (2010). Behavioral state-dependent reconfiguration of song-related network activity and cholinergic systems. Journal of Chemical Neuroanatomy, 39(2), 132–140.PubMedGoogle Scholar
  123. Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 4(10), 783–794.PubMedGoogle Scholar
  124. Sutter, M. L., & Shamma, S. A. (2010). The relationship of auditory cortical activity to perception and behavior. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 617–641). New York: Springer.Google Scholar
  125. Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6(4), 391–398.PubMedGoogle Scholar
  126. Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.PubMedGoogle Scholar
  127. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Masfield (Eds.), Analysis of visual behavior (pp. 49–586). Cambridge, MA: MIT Press.Google Scholar
  128. Wang, H., Wang, X., Wetzel, W., & Scheich, H. (2006). Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation. European Journal of Neuroscience, 23(8), 2176–2184.PubMedGoogle Scholar
  129. Watanabe, M. (1992). Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Experimental Brain Research, 89(2), 233–247.Google Scholar
  130. Weinberger, N. M. (2004a). Experience-dependent response plasticity in the auditory cortex: Issues, characteristics, mechanisms and functions. In T. N. Parks, E. W. Rubel, & R. R. Fay (Eds.), Plasticity of the auditory system (pp. 173–227). New York: Springer.Google Scholar
  131. Weinberger, N. M. (2004b). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279–290.PubMedGoogle Scholar
  132. Weinberger, N. M., Javid, R., & Lepan, B. (1993). Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences of the USA, 90(6), 2394–2398.PubMedGoogle Scholar
  133. Werner-Reiss, U., Porter, K. K., Underhill, A. M., & Groh, J. M. (2006). Long lasting attenuation by prior sounds in auditory cortex of awake primates. Experimental Brain Research, 168(1–2), 272–276.Google Scholar
  134. Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 3–13.PubMedGoogle Scholar
  135. Winkowski, D. E., & Knudsen, E. I. (2006). Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature, 439(7074), 336–339.PubMedGoogle Scholar
  136. Wollberg, Z., & Sela, J. (1980). Frontal cortex of the awake squirrel monkey: Responses of single cells to visual and auditory stimuli. Brain Research, 198(1), 216–220.PubMedGoogle Scholar
  137. Woloszyn, L., & Sheinberg, D. L. (2009). Neural dynamics in inferior temporal cortex during a visual working memory task. Journal of Neuroscience, 29(17), 5494–5507.PubMedGoogle Scholar
  138. Yin, P., Mishkin, M., Sutter, M., & Fritz, J. B. (2008). Early stages of melody processing: Stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. Journal of Neurophysiology, 100(6), 3009–3029.PubMedGoogle Scholar
  139. Yu, X. J., Xu, X. X., He, S., & He, J. (2009). Change detection by thalamic reticular neurons. Nature Neuroscience, 12(9), 1165–1170.PubMedGoogle Scholar
  140. Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26(28), 7348–7361.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of IowaIowa CityUSA

Personalised recommendations