Advertisement

Speech Perception from a Neurophysiological Perspective

  • Anne-Lise Giraud
  • David Poeppel
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 43)

Abstract

Of all the signals human auditory cortex has to process, the one with the most compelling relevance to the listener is arguably speech. Parsing and decoding speech—the conspecific signal affording the most rapid and most precise transmission of information—must be considered one of the principal challenges of the auditory system. This chapter concentrates on what speech perception entails and what the constituent operations might be, emphasizing a neurophysiological perspective.

Keywords

Speech Signal Speech Perception Auditory Cortex Superior Temporal Sulcus Theta Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The preparation of this manuscript was supported by CNRS to A. L. G. and NIH 2R01DC05660 to D. P.

References

  1. Abeles, M. (1982). Role of the cortical neuron: Integrator or coincidence detector? Israel Journal of Medical Sciences, 18(1), 83–92.PubMedGoogle Scholar
  2. Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the USA, 98(23), 13367–13372.PubMedGoogle Scholar
  3. Allen, J. B. (2005). Articulation and intelligibility. Synthesis Lectures on Speech and Audio Processing, 1(1), 1–124.Google Scholar
  4. Arnal, L. H., Morillon, B., Kell, C. A., & Giraud, A. L. (2009). Dual neural routing of visual facilitation in speech processing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(43), 13445–13453.Google Scholar
  5. Arnal, L. H., Wyart, V., & Giraud, A.L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech, Nature Neuroscience, 16(6), 794-801.Google Scholar
  6. Atencio, C. A., Sharpee, T. O., & Schreiner, C. E. (2009). Hierarchical computation in the canonical auditory cortical circuit. Proceedings of the National Academy of Sciences of the USA, 106(51), 21894–21899.PubMedGoogle Scholar
  7. Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.PubMedGoogle Scholar
  8. Bendor, D., & Wang, X. (2006). Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology, 16(4), 391–399.PubMedGoogle Scholar
  9. Bendor, D., & Wang, X. (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nature Neuroscience, 10(6), 763–771.PubMedGoogle Scholar
  10. Binzegger, T., Douglas, R. J., & Martin, K. A. (2007). Stereotypical bouton clustering of individual neurons in cat primary visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(45), 12242–12254.Google Scholar
  11. Blumstein, S. E., Myers, E. B., & Rissman, J. (2005). The perception of voice onset time: An fmri investigation of phonetic category structure. Journal of Cognitive Neuroscience, 17(9), 1353–1366.PubMedGoogle Scholar
  12. Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389–395.PubMedGoogle Scholar
  13. Borgers, C. & Kopell, N. J. (2008). Gamma oscillations and stimulus selection. Neural Computations, 20(2), 383–414.Google Scholar
  14. Borgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of Sciences of the USA, 102(19), 7002–7007.PubMedGoogle Scholar
  15. Brennan, J., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., & Pylkkänen, L. (2010). Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language. doi:10.1016/j.bandl.2010.04.002Google Scholar
  16. Britvina, T., & Eggermont, J. J. (2007). A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings. Biological Cybernetics, 96(2), 245–264.PubMedGoogle Scholar
  17. Brugge, J. F., Nourski, K. V., Oya, H., Reale, R. A., Kawasaki, H., Steinschneider, M., & Howard, M. A., 3rd (2009). Coding of repetitive transients by auditory cortex on Heschl’s gyrus. Journal of Neurophysiology, 102(4), 2358–2374.PubMedGoogle Scholar
  18. Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515.PubMedGoogle Scholar
  19. Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex,, 16(6), 835–848.Google Scholar
  20. Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13(11), 1428–1432.PubMedGoogle Scholar
  21. Cleary, M., & Pisoni, D. B. (2001). Speech perception and spoken word recognition: Research and theory. In B. Goldstein (Ed.), Handbook of perception (pp. 499–534). Cambridge, MA: Blackwell.Google Scholar
  22. Corballis, M. C. (2009). The evolution of language. Annals of the New York Academy of Sciences, 1156, 19–43.PubMedGoogle Scholar
  23. da Costa, N. M., & Martin, K. A. C. (2010). Whose cortical column would that be? Frontiers in Neuroanatomy. doi: 10.3389/fnana.2010.00016.Google Scholar
  24. Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hearing Research, 229(1–2), 132–147.PubMedGoogle Scholar
  25. Davis, M. H., Johnsrude, I. S., Hervais-Adelman, A., Taylor, K., & McGettigan, C. (2005). Lexical information drives perceptual learning of distorted speech: Evidence from the comprehension of noise-vocoded sentences. Journal Experimental Psychology General, 134(2), 222–241.Google Scholar
  26. Ding, N., & Simon, J. Z. (2009). Neural representations of complex temporal modulations in the human auditory cortex. Journal of Neurophysiology, 102(5), 2731–2743. Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19(19), 1608–1615.Google Scholar
  27. Elhilali, M., J. B. Fritz, Klein, D. J., Simon, J. Z., & Shamma, S. A. (2004). Dynamics of precise spike timing in primary auditory cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(5), 1159–1172.Google Scholar
  28. Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453(7198), 1102–1106.PubMedGoogle Scholar
  29. Elliott, T. M., & Theunissen, F. E. (2009). The modulation transfer function for speech intelligibility. PLoS Computational Biology, 5(3), e1000302. doi:10.1371/journal.pcbi.1000302Google Scholar
  30. Faulkner, A., Rosen, S., & Smith, C. (2000). Effects of the salience of pitch and periodicity information on the intelligibility of four-channel vocoded speech: Implications for cochlear implants. The Journal of the Acoustical Society of America, 108(4), 1877–1887.PubMedGoogle Scholar
  31. Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44(4), 491–505.PubMedGoogle Scholar
  32. Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40(4), 859–869.PubMedGoogle Scholar
  33. Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” is saying “what”? Brain-based decoding of human voice and speech. Science, 322(5903), 970–973.PubMedGoogle Scholar
  34. Friederici, A. D., Kotz, S. A., Scott, S. K., & Obleser, J. (2010). Disentangling syntax and intelligibility in auditory language comprehension. Human Brain Mapping, 31(3), 448–457.PubMedGoogle Scholar
  35. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.PubMedGoogle Scholar
  36. Gaese, B. H., & Ostwald, J. (1995). Temporal coding of amplitude and frequency modulation in the rat auditory cortex. The European Journal of Neuroscience, 7(3), 438–450.PubMedGoogle Scholar
  37. Gaskell, M. G., & Marslen-Wilson, W. D. (2002). Representation and competition in the perception of spoken words. Cognitive Psychology, 45(2), 220–266.PubMedGoogle Scholar
  38. Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillations locked to the input rhythm. Frontiers in Psychology, 2:130.PubMedGoogle Scholar
  39. Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66(1–2), 113–126.PubMedGoogle Scholar
  40. Giraud, A.L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, in press.PubMedGoogle Scholar
  41. Giraud, A. L., & Price, C. J. (2001). The constraints functional neuroimaging places on classical models of auditory word processing. Journal of Cognitive Neuroscience, 13(6), 754–765.PubMedGoogle Scholar
  42. Giraud, A. Lorenzi, C., Ashburner, J., Wable, J., Johnsrude, I., Frackowiak, R., & Kleinschmidt, A. (2000). Representation of the temporal envelope of sounds in the human brain. Journal of Neurophysiology, 84(3), 1588–1598.Google Scholar
  43. Giraud, A. L., Kell, C., Thierfelder, C., Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2004). Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing. Cerebral Cortex, 14(3), 247–255.PubMedGoogle Scholar
  44. Giraud, A. L., Kleinschmidt, A., Poeppel, D., Lund, T. E., Frackowiak, R. S., & Laufs, H. (2007). Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56(6), 1127–1134.PubMedGoogle Scholar
  45. Greenberg, S., & Ainsworth, W. A. (2006). Listening to speech: An auditory perspective. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  46. Greenberg, S. & Arai, T. (2001). The relation between speech intelligibility and the complex modulation spectrum. Proceedings of the 7th Eurospeech Conference on Speech Communication and Technology (Eurospeech-2001), 473-476.Google Scholar
  47. Greenberg, S., & Kingsbury, B. E. D. (1997). The modulation spectrogram: In pursuit of an invariant representation of speech. Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97)-Volume 3 Google Scholar
  48. Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K. V., Kawasaki, H., Oya, H., et al. (2010) Direct recordings of pitch responses from human auditory cortex. Current Biology, 20(12), 1128–1132.PubMedGoogle Scholar
  49. Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39(5), 350–365.PubMedGoogle Scholar
  50. Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96(3), 280–301.PubMedGoogle Scholar
  51. Harnad, S. R. (1987). Categorical perception: The groundwork of cognition. Cambridge, UK: Cambridge University Press.Google Scholar
  52. Hawkins, S. (1999). Reevaluating assumptions about speech perception: Interactive and integrative theories. In J. M. Pickett (Ed.), The acoustics of speech communication (pp. 232–288). Boston: Allyn and Bacon.Google Scholar
  53. Heil, P. (1997a). Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophysiology, 77(5), 2616–2641.PubMedGoogle Scholar
  54. Heil, P. (1997b). Auditory cortical onset responses revisited. II. Response strength. Journal of Neurophysiology, 77(5), 2642–2660.PubMedGoogle Scholar
  55. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138.PubMedGoogle Scholar
  56. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.PubMedGoogle Scholar
  57. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.PubMedGoogle Scholar
  58. Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407–422. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.Google Scholar
  59. Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences, 13(5), 216–221.PubMedGoogle Scholar
  60. Hromádka, T., & Zador, A. M. (2009). Representations in auditory cortex. Current Opinion in Neurobiology, 19(4), 430–433.PubMedGoogle Scholar
  61. Hutsler, J., & Galuske, R. A. (2003). Hemispheric asymmetries in cerebral cortical networks. Trends in Neurosciences, 26(8), 429–435.PubMedGoogle Scholar
  62. Indefrey, P., & Levelt, W. J. (2004) The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144.PubMedGoogle Scholar
  63. Jamison, H. L., Watkins, K. E., Bishop, D. V., & Matthews, P. M. (2006). Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex,, 16(9), 1266–1275.Google Scholar
  64. Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541–577.PubMedGoogle Scholar
  65. Kanedera, N., Arai, T., Hermansky, H., & Pavel, M. (1999). On the relative importance of various components of the modulation spectrum for automatic speech recognition. Speech Communication, 28(1), 43–55.Google Scholar
  66. Kayser, C., Logothetis, N. K., & Panzeri, S. (2010). Millisecond encoding precision of auditory cortex neurons. Proceedings of the National Academy of Sciences of the USA, 107(39), 16976–16981.PubMedGoogle Scholar
  67. Kell, C. A., Morillon, B., Kouneiher, F., & Giraud, A. L. (2010). Lateralization of speech production starts in sensory cortices—a possible sensory origin of cerebral left dominance for speech. Cerebral Cortex,. doi:10.1093/cercor/bhq167Google Scholar
  68. Klatt, D. H. (1989). Review of selected models of speech perception. In W. Marslen-Wilson (Ed.), Lexical representation and process (pp. 169–226). Cambridge, MA: MIT Press.Google Scholar
  69. Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933.PubMedGoogle Scholar
  70. Laver, J. (1994). Principles of phonetics. Cambridge textbooks in linguistics. New York: Cambridge University Press.Google Scholar
  71. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.PubMedGoogle Scholar
  72. Loebach, J. L., & Wickesberg, R. E. (2008). The psychoacoustics of noise vocoded speech: A physiological means to a perceptual end. Hearing Research, 241(1–2), 87–96.PubMedGoogle Scholar
  73. Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001–1010.PubMedGoogle Scholar
  74. Luo, H., Wang, Y., Poeppel, D., & Simon, J. Z. (2006). Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. Journal of Neurophysiology, 96(5), 2712–2723.PubMedGoogle Scholar
  75. Luo, H., Boemio, A., Gordon, M., & Poeppel, D. (2007a). The perception of FM sweeps by Chinese and English listeners. Hearing Research, 224(1–2), 75–83.PubMedGoogle Scholar
  76. Luo, H., Wang, Y., Poeppel, D., & Simon, J. Z. (2007b). Concurrent encoding of frequency and amplitude modulation in human auditory cortex: Encoding transition. Journal of Neurophysiology, 98(6), 3473–3485.PubMedGoogle Scholar
  77. Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., &, Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the USA, 104(32), 13170–13175.PubMedGoogle Scholar
  78. McClelland, J. L., & Elman, J. L. (1986). The trace model of speech perception. Cognitive Psychology, 18(1), 1–86.PubMedGoogle Scholar
  79. Middlebrooks, J. C. (2008). Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. Journal of Neurophysiology, 100(1), 76–91.PubMedGoogle Scholar
  80. Miller, G. A. (1951). Language and communication. New York: McGraw-Hill.Google Scholar
  81. Monahan, P. J., & Idsardi, W. J. (2010). Auditory sensitivity to formant ratios: Toward an account of vowel normalization. Language and Cognitive Processes, 25(6), 808–839.PubMedGoogle Scholar
  82. Morillon, B., Lehongre, K., Frackowiak, R. S., Ducorps, A., Kleinschmidt, A., Poeppel, D., & Giraud, A. L. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proceedings of the National Academy of Sciences of the USA, 107(43), 18688–18693.PubMedGoogle Scholar
  83. Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432–434.PubMedGoogle Scholar
  84. Nahum, M., Nelken, I., & Ahissar, M. (2008). Low-Level information and high-level perception: The case of speech in noise. PLoS Biology, 6(5), e126.PubMedGoogle Scholar
  85. Nelken, I., Bizley, J. K., Nodal, F. R., Ahmed, B., King, A. J., & Schnupp, J. W. (2008). Responses of auditory cortex to complex stimuli: Functional organization revealed using intrinsic optical signals. Journal of Neurophysiology, 99(4), 1928–1941.PubMedGoogle Scholar
  86. Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roettinger, M., et al. (2006). Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping, 27(7), 562–571.PubMedGoogle Scholar
  87. Obleser, J., Eisner, F., & Kotz, S. A. (2008). Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(32), 8116–8123.Google Scholar
  88. Overath, T., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2008). Encoding of spectral correlation over time in auditory cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(49), 13268–13273.Google Scholar
  89. Pardo, J. S., & Remez, R. E. (2006). The perception of speech. In M. Traxler & M. A. Gernsbacher (Eds.), The handbook of psycholinguistics, 2nd ed. (pp. 201–248). New York: Academic Press.Google Scholar
  90. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987.PubMedGoogle Scholar
  91. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.PubMedGoogle Scholar
  92. Petkov, C. I., Kayser, C., Augath, M., & Logothetis, N. K. (2006). Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biology, 4(7), e215.PubMedGoogle Scholar
  93. Phillips, D. P., Hall, S. E., & Boehnke, S. E. (2002). Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research, 167(1–2), 192–205.PubMedGoogle Scholar
  94. Pickett, J. M. (1999). The acoustics of speech communication. Boston: Allyn and Bacon.Google Scholar
  95. Pienkowski, M., & Eggermont, J. J. (2010). Nonlinear cross-frequency interactions in primary auditory cortex spectrotemporal receptive fields: A Wiener-Volterra analysis. Journal of Computational Neuroscience, 28(2), 285–303.PubMedGoogle Scholar
  96. Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive Science, 25(5), 679–693.Google Scholar
  97. Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as asymmetric sampling in time. Speech Communication, 41(1), 245–255.Google Scholar
  98. Poeppel, D., & Monahan, P. J. (2008). Speech perception: Cognitive foundations and cortical implementation. Current Directions in Psychological Science, 17(2), 80.Google Scholar
  99. Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 1071–1086.Google Scholar
  100. Pöppel, E. (1988). Mindworks: Time and conscious experience. Boston: Harcourt Brace Jovanovich.Google Scholar
  101. Pulvermüller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the USA, 103(20), 7865–7870.Google Scholar
  102. Rabiner, L., & Juang, B. H. (1993). Fundamentals of speech recognition. Englewood Cliffs, NJ:Prentice-HallGoogle Scholar
  103. Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.PubMedGoogle Scholar
  104. Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212(4497), 947–949.PubMedGoogle Scholar
  105. Roberts, B., Summers, R. J., & Bailey, P. J. (2011). The intelligibility of noise-vocoded speech: Spectral information available from across-channel comparison of amplitude envelopes. Proc. R. Soc. B, 278(1711), 1595–1600.PubMedGoogle Scholar
  106. Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London B:, Biological Sciences, 336(1278), 367–373.PubMedGoogle Scholar
  107. Saoud, H., Josse, G., Bertasi, E., Truy, E., Chait, M., & Giraud, A-L. (2012). Brain-speech alignment enhances auditory cortical responses and pseech perception. The Journal of Neuroscience, in press.PubMedGoogle Scholar
  108. Saberi, K., & Perrott, D. R. (1999). Cognitive restoration of reversed speech. Nature, 398(6730), 760.PubMedGoogle Scholar
  109. Schönwiesner, M., & Zatorre, R. J. (2009). Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fmri. Proceedings of the National Academy of Sciences of the USA, 106(34), 14611–14616.PubMedGoogle Scholar
  110. Schroeder, C. E., & Lakatos, P. (2009a). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18.PubMedGoogle Scholar
  111. Schroeder, C. E., & Lakatos, P. (2009b). The gamma oscillation: Master or slave? Brain Topography, 22(1), 24–26.PubMedGoogle Scholar
  112. Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26(2), 100–107.PubMedGoogle Scholar
  113. Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain: A Journal of Neurology, 123(Pt 12), 2400–2406.Google Scholar
  114. Scott, S. K., Rosen, S., Lang, H., & Wise, R. J. (2006). Neural correlates of intelligibility in speech investigated with noise vocoded speech-a positron emission tomography study. The Journal of the Acoustical Society of America, 120(2), 1075–1083.PubMedGoogle Scholar
  115. Shamir, M., Ghitza, O., Epstein, S., & Kopell, N. (2009). Representation of time-varying stimuli by a network exhibiting oscillations on a faster time scale. PLoS Computational Biology, 5(5), e1000370.PubMedGoogle Scholar
  116. Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303.PubMedGoogle Scholar
  117. Sharma, A., & Dorman, M. F. (1999).Cortical auditory evoked potential correlates of categorical perception of voice-onset time. The Journal of the Acoustical Society of America, 106, 1078–1083.PubMedGoogle Scholar
  118. Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87–90.PubMedGoogle Scholar
  119. Souza, P., & Rosen S. (2009). Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech. The Journal of the Acoustical Society of America, 126(2), 792–805.PubMedGoogle Scholar
  120. Steeneken, H. J. M., & Houtgast, T. (1980). A physical method for measuring speech-transmission quality. The Journal of the Acoustical Society of America, 67(1), 318–326.PubMedGoogle Scholar
  121. Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.Google Scholar
  122. Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. The Journal of the Acoustical Society of America, 111(4), 1872–1891.PubMedGoogle Scholar
  123. Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., & Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(47), 14726–14733.Google Scholar
  124. Tian, X., & Poeppel, D. (2010). Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in Psychology. doi: 10.3389/fpsyg.2010.00166Google Scholar
  125. Tiesinga, P., & Sejnowski, T. J. (2009). Cortical enlightenment: Are attentional gamma oscillations driven by ING or PING? Neuron, 63(6), 727–732.PubMedGoogle Scholar
  126. Turkeltaub, P. E., & Coslett, H. B. (2010). Localization of sublexical speech perception components. Brain and Language, 114(1), 1–15.PubMedGoogle Scholar
  127. Ueno, T., Saito, S., Rogers, T. T., & Lambon-Ralph, M. A. (2011) Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron 72: 385–96.PubMedGoogle Scholar
  128. Van Rullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207–213.Google Scholar
  129. van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech speeds up the neural processing of auditory speech. Proceedings of the National Academy of Sciences of the USA, 102(4), 1181–1186.PubMedGoogle Scholar
  130. von Kriegstein, K., Smith, D. R., Patterson, R. D., Kiebel, S. J., & Griffiths, T. D. (2010) How the human brain recognizes speech in the context of changing speakers. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(2), 629–638.Google Scholar
  131. Wacongne, C., Labyt, E., van Wassenhove, V., Bekinchtein, T., Naccache, L., & Dehaene, S. (2011). Proceedings of the National Academy of Sciences, 108: 20754–9.Google Scholar
  132. Wang, X. (2007). Neural coding strategies in auditory cortex. Hearing Research, 229(1–2), 81–93.PubMedGoogle Scholar
  133. Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195–1268.PubMedGoogle Scholar
  134. Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., & Kraus, N. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(1), 61–69.Google Scholar
  135. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.PubMedGoogle Scholar
  136. Womelsdorf, T., Schoffelen, J. M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science 316(5831), 1609–1612.PubMedGoogle Scholar
  137. Zaehle, T., Wüstenberg, T., Meyer, M., & Jäncke, L. (2004). Evidence for rapid auditory perception as the foundation of speech processing: A sparse temporal sampling fmri study. The European Journal of Neuroscience, 20(9), 2447–2456.PubMedGoogle Scholar
  138. Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 40(4), 1871–1887.PubMedGoogle Scholar
  139. Zarate, J. M., Wood, S., & Zatorre, R. J. (2010). Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia, 48(2), 607–618.PubMedGoogle Scholar
  140. Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 1087–1104.Google Scholar
  141. Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 37–46.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Inserm U960, Département d’Etudes CognitivesEcole Normale SupérieureParisFrance
  2. 2.Department of PsychologyNew York UniversityNew YorkUSA

Personalised recommendations