Invasive Research Methods

  • Matthew A. HowardIII
  • Kirill V. Nourski
  • John F. Brugge
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 43)

Abstract

Auditory cortex, in the classic sense of the term, is taken to be the cluster of anatomically and physiologically distinct areas of temporal neocortex that are uniquely and reciprocally connected with one another and with the medial geniculate body and related thalamic nuclear groups. In humans, as many as seven or eight anatomically distinct auditory cortical fields have been identified on the supratemporal plane and posterolateral superior temporal gyrus (STG) (see Clarke and Morosan, Chapter 2).

Keywords

Auditory Cortex Superior Temporal Gyrus Local Field Potential Auditory Evoke Potential Medial Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AEP

averaged evoked potential

CT

computed tomography

ECoG

electrocorticography

EEG

electroencephalography

ERBP

event-related band power

fMRI

functional magnetic resonance imaging

HDE

hybrid depth electrode

HG

Heschl’s gyrus

IFG

inferior frontal gyrus

LFP

local field potential

MEG

magnetoencephalography

MRI

magnetic resonance imaging

PET

positron emission tomography

STG

superior temporal gyrus

vPFC

ventral prefrontal cortex

Notes

Acknowledgments

Preparation of this chapter was supported by NIH RO1-DC004290, UL1RR024979, and GCRC MO1-RR-59 and by the Hoover Fund.

References

  1. Bakken, H. E., Kawasaki, H., Oya, H., Greenlee, J. D., & Howard, M. A. (2003). A device for cooling localized regions of human cerebral cortex. Journal of Neurosurgery, 99, 604–608.PubMedCrossRefGoogle Scholar
  2. Bernhardt, B. C., Worsley, K. J., Kim, H., Evans, A. C., Bernasconi, A., & Bernasconi, N. (2009). Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology, 72, 1747–1754.PubMedCrossRefGoogle Scholar
  3. Bernhardt, B. C., Bernasconi, N., Concha, L., & Bernasconi, A. (2010). Cortical thickness analysis in temporal lobe epilepsy: Reproducibility and relation to outcome. Neurology, 74(22), 1776–1784.PubMedCrossRefGoogle Scholar
  4. Bitterman, Y., Mukamel, R., Malach, R., Fried, I., & Nelken, I. (2008). Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature, 451(7175), 197–201.PubMedCrossRefGoogle Scholar
  5. Boatman, D. (2004). Cortical bases of speech perception: Evidence from functional lesion studies. Cognition, 92, 47–65.PubMedCrossRefGoogle Scholar
  6. Boatman, D., Lesser, R. P., & Gordon, B. (1995). Auditory speech processing in the left temporal lobe: An electrical interference study. Brain and Language, 51(2), 269–290.PubMedCrossRefGoogle Scholar
  7. Bonilha, L., Rorden, C., Appenzeller, S., Coan, A. C., Cendes, F., & Li, L. M. (2006). Gray matter atrophy associated with duration of temporal lobe epilepsy. NeuroImage, 32, 1070–1079.PubMedCrossRefGoogle Scholar
  8. Brugge, J. F., Volkov, I. O., Garell, P. C., Reale, R. A., & Howard, M. A. (2003). Functional connections between auditory cortex on Heschl’s gyrus and on the lateral superior temporal gyrus in humans. Journal of Neurophysiology, 90, 3750–3763.PubMedCrossRefGoogle Scholar
  9. Brugge, J. F., Volkov, I. O., Reale, R. A., Garell, P. C., Kawasaki, H., Oya, H., et al. (2005). The posteriolateral superior temporal auditory field in humans. Functional organization and connectivity. In R. Konig, P. Heil, E. Budinger, & H. Scheich (Eds.), The auditory cortex— toward a synthesis of human and animal research (pp. 145–162). Mahwah, NJ: Erlbaum.Google Scholar
  10. Brugge, J. F., Volkov, I. O., Oya, H., Kawasaki, H., Reale, R. A., Fenoy, A., et al. (2008). Functional localization of auditory cortical fields of human: Click-train stimulation. Hearing Research, 238(1–2), 12–24.PubMedCrossRefGoogle Scholar
  11. Brugge, J. F., Nourski, K. V., Oya, H., Reale, R. A., Kawasaki, H., Steinschneider, M., & Howard, M. A. (2009). Coding of repetitive transients by auditory cortex on Heschl’s gyrus. Journal of Neurophysiology, 102(4), 2358–2374.PubMedCrossRefGoogle Scholar
  12. Catani, M., Jones, D. K., Donato, R., & Ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain, 126(Pt 9), 2093–2107.PubMedCrossRefGoogle Scholar
  13. Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.PubMedCrossRefGoogle Scholar
  14. Celesia, G. G. (1976). Organization of auditory cortical areas in man. Brain, 99, 403–414.PubMedCrossRefGoogle Scholar
  15. Celesia, G. G., & Puletti, F. (1969). Auditory cortical areas of man. Neurology, 19, 211–220.PubMedGoogle Scholar
  16. Cohen, Y. E., Russ, B. E., Davis, S. J., Baker, A. E., Ackelson, A. L., & Nitecki, R. (2009). A functional role for the ventrolateral prefrontal cortex in non-spatial auditory cognition. Proceedings of the National Academy of Sciences of the USA, 106(47), 20045–20050.PubMedGoogle Scholar
  17. Creutzfeldt, O., & Ojemann, G. (1989). Neuronal activity in the human lateral temporal lobe. III. Activity changes during music. Experimental Brain Research, 77(3), 490–498.CrossRefGoogle Scholar
  18. Creutzfeldt, O., Ojemann, G., & Lettich, E. (1989a). Neuronal activity in the human lateral temporal lobe. I. Responses to speech. Experimental Brain Research, 77(3), 451–475.CrossRefGoogle Scholar
  19. Creutzfeldt, O., Ojemann, G., & Lettich, E. (1989b). Neuronal activity in the human lateral temporal lobe. II. Responses to the subjects own voice. Experimental Brain Research, 77(3), 476–489.CrossRefGoogle Scholar
  20. Crone, N. E., Boatman, D., Gordon, B., & Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Clinical Neurophysiology, 112(4), 565–582.PubMedCrossRefGoogle Scholar
  21. Crone, N. E., Sinai, A., & Korzeniewska, A. (2006). High-frequency gamma oscillations and human brain mapping with electrocorticography. Progress in Brain Research, 159, 275–295.PubMedCrossRefGoogle Scholar
  22. Davis, P. A. (1939). Effects of acoustic stimuli on the waking human brain. Journal of Neurophysiology, 2, 494–499.Google Scholar
  23. Edwards, E., Soltani, M., Kim, W., Dalal, S. S., Nagarajan, S. S., Berger, M. S., & Knight, R. T. (2009). Comparison of time-frequency responses and the event-related potential to auditory speech stimuli in human cortex. Journal of Neurophysiology, 102(1), 377–386.PubMedCrossRefGoogle Scholar
  24. Engel, A. K., König, P., Kreiter, A. K., Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252(5010), 1177–1179.CrossRefGoogle Scholar
  25. Engel, A. K., Moll, C. K., Fried, I., & Ojemann, G. A. (2005). Invasive recordings from the human brain: Clinical insights and beyond. Nature Reviews Neuroscience, 6(1), 35–47.PubMedCrossRefGoogle Scholar
  26. Engel, J. J. (2001). Finally, a randomized, controlled trial of epilepsy surgery. New England Journal of Medicine, 345, 365–367.PubMedCrossRefGoogle Scholar
  27. Fenoy, A. J., Severson, M. A., Volkov, I. O., Brugge, J. F., & Howard, M.A. (2006). Hearing suppression induced by electrical stimulation of human auditory cortex. Brain Research, 1118, 75–83.PubMedCrossRefGoogle Scholar
  28. Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., et al. (2001). Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86(6), 2761–2788.PubMedGoogle Scholar
  29. Flinker, A., Chang, E. F., Barbaro, N. M., Berger, M. S., & Knight, R. T. (2011). Sub-centimeter language organization in the human temporal lobe. Brain and Language. doi: S0093–934X(10)00155–0 [pii].Google Scholar
  30. Freeman, W. J. (1978). Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalography and Clinical Neurophysiology, 44, 586–605.PubMedCrossRefGoogle Scholar
  31. Fried, I., Wilson, C. L., Maidment, N. T., Engel, J., Jr., Behnke, E., Fields, T. A., et al. (1999). Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. Journal of Neurosurgery, 91(4), 697–705.PubMedCrossRefGoogle Scholar
  32. Geisler, C. D., Frishkopf, L. S., & Rosenblith, W. A. (1958). Extracranial responses to acoustic clicks in man. Science, 128, 1210–1211.PubMedCrossRefGoogle Scholar
  33. Ghovanloo, M., Otto, K. J., Kipke, D. R., & Najafi, K. (2004). In vitro and in vivo testing of a wireless multichannel stimulating telemetry microsystem. Proceedings of the 26th Annual International Conference of the IEEE EMBS, 6, 4294–4297.Google Scholar
  34. Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–2482.PubMedCrossRefGoogle Scholar
  35. Gloor, P. (1991). Mesial temporal sclerosis: Historical background and an overview from a modern perspective. In H. O. Luders (Ed.), Epilepsy surgery (pp. 689–703). New York: Raven Press.Google Scholar
  36. Gloor, P., Olivier, A., Quesney, L. F., Andermann, F., & Horowitz, S. (1982). The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Annals of Neurology, 12, 129–144.PubMedCrossRefGoogle Scholar
  37. Gourevitch, B., Le Bouquin Jeannes, R., Faucon, G., & Liegeois-Chauvel, C. (2008). Temporal envelope processing in the human auditory cortex: Response and interconnections of auditory cortical areas. Hearing Research, 237(1–2), 1–18.PubMedCrossRefGoogle Scholar
  38. Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.PubMedCrossRefGoogle Scholar
  39. Greenlee, J. D., Oya, H., Kawasaki, H., Volkov, I. O., Kaufman, O. P., Kovach, C., et al. (2004). A functional connection between inferior frontal gyrus and orofacial motor cortex in human. Journal of Neurophysiology, 92(2), 1153–1164.PubMedCrossRefGoogle Scholar
  40. Greenlee, J. D., Oya, H., Kawasaki, H., Volkov, I. O., Severson, M. A., 3rd, Howard, M. A., 3rd, & Brugge, J. F. (2007). Functional connections within the human inferior frontal gyrus. Journal of Comparative Neurology, 503(4), 550–559.PubMedCrossRefGoogle Scholar
  41. Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K. V., Kawasaki, H., Oya, H., et al. (2010). Direct recordings of pitch responses from human auditory cortex. Current Biology, 20(12), 1128–1132.PubMedCrossRefGoogle Scholar
  42. Hackett, T. A. (2003). The comparative anatomy of the primate auditory cortex. In A. A. Ghazanfar (Ed.), Primate audition: Ethology and neurobiology (pp. 199–219). Boca Raton: CRC Press.Google Scholar
  43. Hackett, T. A. (2007). Organization and correspondence of the auditory cortex of humans and nonhuman primates. In J. H. Kaas (Ed.), Evolution of the nervous system (pp. 109–119). Oxford: Elsevier.CrossRefGoogle Scholar
  44. Hackett, T. A. (2008). Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology, 19(10), 774–779.PubMedCrossRefGoogle Scholar
  45. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817(1–2), 45–58.PubMedCrossRefGoogle Scholar
  46. Howard, M. A., Volkov, I. O., Abbas, P. J., Damasio, H., Ollendieck, M. C., & Granner, M. A. (1996a). A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Research, 724, 260–264.PubMedCrossRefGoogle Scholar
  47. Howard, M. A., Volkov, I. O., Granner, M. A., Damasio, H. M., Ollendieck, M. C., & Bakken, H. E. (1996b). A hybrid clinical-research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons. Technical note. Journal of Neurosurgery, 84, 129–132.PubMedCrossRefGoogle Scholar
  48. Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., et al. (2000). Auditory cortex on the posterior superior temporal gyrus of human cerebral cortex. Journal of Comparative Neurology, 416, 76–92.CrossRefGoogle Scholar
  49. Jenison, R. L., Rangel, A., Oya, H., Kawasaki, H., & Howard, M. A. (2011). Value encoding in single neurons in the human amygdala during decision making. Journal of Neuroscience, 31(1), 331–338.PubMedCrossRefGoogle Scholar
  50. Johnson, M. D., Otto, K. J., Williams, J. C., & Kipke, D. R. (2004). Bias voltages at microelectrodes change neural interface properties in vivo. Proceedings of the 26th Annual International Conference of the IEEE EMBS, 6, 4103–4106.Google Scholar
  51. Kaas, J. H., & Hackett, T. A. (2005). Subdivisions and connections of auditory cortex in primates: A working model. In R. Konig, P. Heil, E. Budinger, & H. Scheich (Eds.), Auditory cortex. A synthesis of human and animal research (pp. 7–25). Mahwah, NJ: Erlbaum.Google Scholar
  52. Kellis, S., Miller, K., Thomson, K., Brown, R., House, P., & Greger, B. (2010). Decoding spoken words using local field potentials recorded from the cortical surface. Journal of Neural Engineering, 7(5), 056007.PubMedCrossRefGoogle Scholar
  53. Lempka, S. F., Johnson, M. D., Barnett, D. W., Moffitt, M. A., Otto, K. J., Kipke, D. R., & McIntyre, C. C. (2006). Optimization of microelectrode design for cortical recording based on thermal noise considerations. Proceedings of the 28th IEEE EMBS Annual International Conference, 1, 3361–3364.Google Scholar
  54. Leonard, C. M., Puranik, C., Kuldau, J. M., & Lombardino, L. J. (1998). Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: Where is it? Cerebral Cortex, 8, 397–406.PubMedCrossRefGoogle Scholar
  55. Liégeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114, 139–151.PubMedGoogle Scholar
  56. Liégeois-Chauvel, C., Musolino, A., Badier, J. M., Marquis, P., & Chauvel, P. (1994). Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalography and Clinical Neurophysiology, 92, 204–214.PubMedCrossRefGoogle Scholar
  57. Liégeois-Chauvel, C., de Graaf, J. B., Laguitton, V., & Chauvel, P. (1999). Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cerebral Cortex, 9, 484–496.PubMedCrossRefGoogle Scholar
  58. Liégeois-Chauvel, C., Lorenzi, C., Trebuchon, A., Regis, J., & Chauvel, P. (2004). Temporal envelope processing in the human left and right auditory cortices. Cerebral Cortex, 14(7), 731–740.PubMedCrossRefGoogle Scholar
  59. Lu, T., Liang, L., & Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4(11), 1131–1138.PubMedCrossRefGoogle Scholar
  60. Matsumoto, R., Nair, D. R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., & Luders, H. O. (2004). Functional connectivity in the human language system: A cortico-cortical evoked potential study. Brain, 127(Pt 10), 2316–2330.PubMedCrossRefGoogle Scholar
  61. Matsumoto, R., Nair, D. R., LaPresto, E., Bingaman, W., Shibasaki, H., & Luders, H. O. (2007). Functional connectivity in human cortical motor system: A cortico-cortical evoked potential study. Brain, 130(Pt 1), 181–197.PubMedGoogle Scholar
  62. Miller, K. J., Makeig, S., Hebb, A. O., Rao, R. P., denNijs, M., & Ojemann, J. G. (2007). Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: The “Location on Cortex” (LOC) package for MATLAB. Journal of Neuroscience Methods, 162(1–2), 303–308.PubMedCrossRefGoogle Scholar
  63. Moriarity, J. L., Boatman, D., Krauss, G. L., Storm, P. B., & Lenz, F. A. (2001). Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. Journal of Neurology, Neurosurgery and Psychiatry, 71(4), 549–551.CrossRefGoogle Scholar
  64. Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R. (2005). Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science, 309(5736), 951–954.PubMedCrossRefGoogle Scholar
  65. Nourski, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C. K., Chen, H., et al. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29(39), 15564–15574.PubMedCrossRefGoogle Scholar
  66. Oya, H., Poon, P. W., Brugge, J. F., Reale, R. A., Kawasaki, H., Volkov, I. O., & Howard, M. A., 3rd. (2007). Functional connections between auditory cortical fields in humans revealed by Granger causality analysis of intra-cranial evoked potentials to sounds: comparison of two methods. Biosystems, 89(1–3), 198–207.PubMedCrossRefGoogle Scholar
  67. Penfield, W., & Perot, P. (1963). The brain’s record of auditory and visual experience—a final summary and discussion. Brain, 86, 595–696.PubMedCrossRefGoogle Scholar
  68. Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man—A clinical study of localization of function. New York: Macmillan.Google Scholar
  69. Pierce, A. L., Sommakia, S., Rickus, J. L., & Otto, K. J. (2009). Thin-film silica sol-gel coatings for neural microelectrodes. Journal of Neuroscience Methods, 180(1), 106–110.PubMedCrossRefGoogle Scholar
  70. Preuss, T. M. (1995). The argument from animals to humans in cognitive neuroscience. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1227–1241). Cambridge, MA: MIT Press.Google Scholar
  71. Rademacher, J., Caviness, V., Steinmetz, H., & Galaburda, A. (1993). Topographical variation of the human primary cortices; implications for neuroimaging, brain mapping and neurobiology. Cerebral Cortex, 3, 313–329.PubMedCrossRefGoogle Scholar
  72. Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.PubMedCrossRefGoogle Scholar
  73. Ray, S., Niebur, E., Hsiao, S. S., Sinai, A., & Crone, N. E. (2008). High-frequency gamma activity (80–150 Hz) is increased in human cortex during selective attention. Clinical Neurophysiology, 119(1), 116–133.PubMedCrossRefGoogle Scholar
  74. Reddy, C. G., Dahdaleh, N.S., Albert, G., Chen, F., Hansen, D., Nourski, K., et al. (2010). A method for placing Heschl gyrus depth electrodes. Journal of Neurosurgery, 112(6), 1301–1307.PubMedCrossRefGoogle Scholar
  75. Romanski, L. M. (2004). Domain specificity in the primate prefrontal cortex. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 421–429.CrossRefGoogle Scholar
  76. Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience, 5(1), 15–16.PubMedCrossRefGoogle Scholar
  77. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2, 1131–1136.PubMedCrossRefGoogle Scholar
  78. Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society B: Biological Sciences, 336(1278), 367–373.CrossRefGoogle Scholar
  79. Sinai, A., Bowers, C. W., Crainiceanu, C. M., Boatman, D., Gordon, B., Lesser, R. P., et al.(2005). Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain, 128(Pt 7), 1556–1570.PubMedCrossRefGoogle Scholar
  80. Sinha, S. R., Crone, N. E., Fotta, R., Lenz, F., & Boatman, D. F. (2005). Transient unilateral hearing loss induced by electrocortical stimulation. Neurology, 64, 383–385.PubMedCrossRefGoogle Scholar
  81. Steinschneider, M., Reser, D. H., Fishman, Y. I., Schroeder, C. E., & Arezzo, J. C. (1998). Click train encoding in primary auditory cortex of the awake monkey: Evidence for two mechanisms subserving pitch perception. Journal of the Acoustical Society of America, 104(5), 2935–2955.PubMedCrossRefGoogle Scholar
  82. Steinschneider, M., Volkov, I. O., Fishman, Y. I., Oya, H., Arezzo, J. C., & Howard, M. A., 3rd. (2005). Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter. Cerebral Cortex, 15(2), 170–186.PubMedCrossRefGoogle Scholar
  83. Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2008). Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cerebral Cortex, 18(3), 610–625.PubMedCrossRefGoogle Scholar
  84. World Health Organization (2005). Atlas: Epilepsy care in the world. Geneva: WHO.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Matthew A. HowardIII
    • 1
  • Kirill V. Nourski
    • 2
  • John F. Brugge
    • 3
  1. 1.Department of NeurosurgeryUniversity of IowaIowa CityUSA
  2. 2.Department of NeurosurgeryUniversity of IowaIowa CityUSA
  3. 3.Department of NeurosurgeryUniversity of IowaIowa CityUSA

Personalised recommendations