Architecture, Connectivity, and Transmitter Receptors of Human Auditory Cortex

  • Stephanie Clarke
  • Patricia Morosan
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 43)


Human auditory cortex, located on the supratemporal plane, comprises in the vicinity of primary auditory cortex (PAC) several nonprimary auditory areas. Architectonic studies that benefited from methodological advances, such as observer-independent analysis and functionally related stains, have identified specific areas whose involvement in speech analysis, sound recognition, and auditory spatial processing has been established in activation studies. Postmortem and in vivo tracing studies have revealed a complex pattern of intra- and interareal connections that partially resemble those described in nonhuman primates but that also display specifically human attributes. Current evidence reveals a model of parallel and hierarchical organization of the early-stage auditory areas with an early separation of specific processing streams.


Nonhuman Primate Auditory Cortex Superior Temporal Gyrus Primary Auditory Cortex Medial Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



primary auditory area


acetylcholine esterase




cytochrome oxidase




Heschl’s gyrus


primary auditory cortex


planum polare


planum temporale




superior temporal gyrus


superior temporal sulcus



This work has been supported by the Swiss National Science (Grantt 3200030-124897 to S. Clarke) and the Federal Ministry of Education and Research (BMBF Grant 01GW0623 to P. Morosan).


  1. Altmann, C. F., Bledowski, C., Wibral, M., & Kaiser, J. (2007). Processing of location and pattern changes of natural sounds in the human auditory cortex. NeuroImage, 35, 1192–1200.PubMedGoogle Scholar
  2. Amunts, K., Schleicher, A., & Zilles, K. (2006). Cytoarchitecture of the cerebral cortex – More than localization. NeuroImage, 37, 1061–1065.Google Scholar
  3. Bailey, P., & von Bonin, G. (1951). The isocortex of man. Urbana: University of Illinois Press.Google Scholar
  4. Barrett, D. J., & Hall, D. A. (2006). Response preferences for “what” and “where” in human non-primary auditory cortex. NeuroImage, 32, 968–977.PubMedGoogle Scholar
  5. Barrick, T. R., Lawes, I. N., Mackay, C. E., & Clark, C. A. (2007). White matter pathway asymmetry underlies functional lateralization. Cerebral Cortex, 17, 591–598.PubMedGoogle Scholar
  6. Beck, E. (1930). Die Myeloarchitektonik der dorsalen Schläfenlappenrinde beim Menschen. Journal für Psychologie und Neurologie, 41, 129–263.Google Scholar
  7. Binder, J. R., Frost, J. A., Hammeke, T. A., Rao, S. M., & Cox, R. W. (1996). Function of the left planum temporale in auditory and linguistic processing. Brain, 119(4), 1239–1247.PubMedGoogle Scholar
  8. Braak, H. (1978). The pigment architecture of the human temporal lobe. Anatomy and Embryology, 154(2), 213–240.PubMedGoogle Scholar
  9. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth.Google Scholar
  10. Campain, R., & Minckler, J. (1976). A note on the gross configurations of the human auditory cortex. Brain and Language, 3, 318–323.PubMedGoogle Scholar
  11. Campbell, A. W. (1905). Histological studies on the localization of cerebral function. Cambridge, UK: Cambridge University Press.Google Scholar
  12. Chance, S. A., Casanova, M. F., Switala, A. E., & Crow, T. J. (2008). Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain, 131, 3178–3192.PubMedGoogle Scholar
  13. Chiry, O., Tardif, E., Magistretti, P. J., & Clarke, S. (2003). Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. European Journal of Neuroscience, 17, 397–410.PubMedGoogle Scholar
  14. Clarke, S. (1994). Association and intrinsic connections of human extrastriate visual cortex. Proceedings of the Royal Society London B: Biological Sciences, 257, 87–92.Google Scholar
  15. Clarke, S., & Miklossy, J. (1990). Occipital cortex in man: Organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. Journal of Comparative Neurology, 298, 188–214.PubMedGoogle Scholar
  16. Clarke, S., & Rivier, F. (1998). Compartments within human primary auditory cortex: Evidence from cytochrome oxidase and acetylcholinesterase staining. European Journal of Neuroscience, 10, 741–745.PubMedGoogle Scholar
  17. Clarke, S., Riahi-Arya, S., Tardif, E., Eskenasy, A. C., & Probst, A. (1999). Thalamic projections of the fusiform gyrus in man. European Journal of Neuroscience, 11, 1835–1838.PubMedGoogle Scholar
  18. Clarke, S., Bellmann, T. A., Maeder, P., Adriani, M., Vernet, O., Regli, L., et al. (2002). What and where in human audition: Selective deficits following focal hemispheric lesions. Experimental Brain Research, 147, 8–15.Google Scholar
  19. Cunningham, D. J. (1892). Contribution to the surface anatomy of the cerebral hemispheres: Cunningham memoirs. Dublin: Royal Irish Academy.Google Scholar
  20. Da Costa, S., van der Zwaag, W., Marques, J. P., Frackowiak, R. S. J., Clarke, S., & Saenz, M. (2011). Human primary auditory cortex follows the shape of Heschl’s gyrus. Journal of Neuroscience, 31, 14067–14075.Google Scholar
  21. Dejerine, J., & Dejerine-Klumpke, A. (1901) Anatomie des Centres Nerveux.Tome II. Paris: J. Rueff.Google Scholar
  22. de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. Journal of Comparative Neurology, 496, 72–96.PubMedGoogle Scholar
  23. Di Virgilio G., & Clarke, S. (1997). Direct interhemispheric visual input to human speech areas. Human Brain Mapping, 5, 347–354.PubMedGoogle Scholar
  24. Di Virgilio G., Clarke, S., Pizzolato, G., & Schaffner, T. (1999). Cortical regions contributing to the anterior commissure in man. Experimental Brain Research, 124, 1–7.Google Scholar
  25. Dorsaint-Pierre, R., Penhune, V. B., Watkins, K. E., Neelin, P., Lerch, J. P., Bouffard, M. et al. (2006). Asymmetries of the planum temporale and Heschl’s gyrus: Relationship to language lateralization. Brain, 129, 1164–1176.PubMedGoogle Scholar
  26. Eberstaller, O. (1890). Das Stirnhirn: Ein Beitrag zur Anatomie der Oberfläche des Gehirns. Wien: Urban & Schwarzenberg.Google Scholar
  27. Flechsig, P. (1908). Bemerkungen über die Hörsphäre des menschlichen Gehirns. Neurologisches Zentralblatt, 27, 2–7.Google Scholar
  28. Formisano, E., Kim, D. S., Di, S. F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40, 859–869.PubMedGoogle Scholar
  29. Fullerton, B. C., & Pandya, D. N. (2007). Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. Journal of Comparative Neurology, 504, 470–498.PubMedGoogle Scholar
  30. Galaburda, A., & Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190, 597–610.PubMedGoogle Scholar
  31. Galaburda, A. M., Sanides, F., & Geschwind, N. (1978). Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Archives of Neurology, 35, 812–817.PubMedGoogle Scholar
  32. Galuske, R. A., Schlote, W., Bratzke, H., & Singer, W. (2000). Interhemispheric asymmetries of the modular structure in human temporal cortex. Science, 289, 1946–1949.PubMedGoogle Scholar
  33. Geschwind, N., & Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161, 186–187.PubMedGoogle Scholar
  34. Gharabaghi, A., Kunath, F., Erb, M., Saur, R., Heckl, S., Tatagiba, M., et al. (2009). Perisylvian white matter connectivity in the human right hemisphere. BMC Neuroscience, 10, 15.PubMedGoogle Scholar
  35. Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25, 348–353.PubMedGoogle Scholar
  36. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394, 475–495.PubMedGoogle Scholar
  37. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999a). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817, 45–58.PubMedGoogle Scholar
  38. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999b). Callosal connections of the parabelt auditory cortex in macaque monkeys. European Journal of Neuroscience, 11, 856–866.PubMedGoogle Scholar
  39. Hackett, T. A., Preuss, T. M., & Kaas, J. H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology, 441, 197–222.PubMedGoogle Scholar
  40. Hackett, T. A., Smiley, J. F., Ulbert, I., Karmos, G., Lakatos, P., de la Mothe, L. A., et al. (2007). Sources of somatosensory input to the caudal belt areas of auditory cortex. Perception, 36, 1419–1430.PubMedGoogle Scholar
  41. Hagmann, P., Cammoun, L., Martuzzi, R., Maeder, P., Clarke, S., Thiran, J. P., et al. (2006). Hand preference and sex shape the architecture of language networks. Human Brain Mapping, 27, 828–835.PubMedGoogle Scholar
  42. Hall, D. A., Barrett, D. J., Akeroyd, M. A., & Summerfield, A. Q. (2005). Cortical representations of temporal structure in sound. Journal of Neurophysiology, 94, 3181–3191.PubMedGoogle Scholar
  43. Hari, R., Hamalainen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., et al. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 50, 127–132.PubMedGoogle Scholar
  44. Hart, H. C., Palmer, A. R., & Hall, D. A. (2004). Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties. Human Brain Mapping, 21, 178–190.PubMedGoogle Scholar
  45. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.PubMedGoogle Scholar
  46. Hopf, A. (1954). Die Myeloarchitektonik des Isocortex temporalis beim Menschen. Journal für Hirnforschung, 1, 208–279.Google Scholar
  47. Hopf, A. (1968). Photometric studies on the myeloarchitecture of the human temporal lobe. Journal für Hirnforschung, 10, 285–297.PubMedGoogle Scholar
  48. Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., et al. (2000). Auditory cortex on the human posterior superior temporal gyrus. Journal of Comparative Neurology, 416, 79–92.PubMedGoogle Scholar
  49. Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50, 1202–1211.PubMedGoogle Scholar
  50. Hutsler, J. J., & Gazzaniga, M. S. (1996). Acetylcholinesterase staining in human auditory and language cortices: Regional variation of structural features. Cerebral Cortex, 6, 260–270.PubMedGoogle Scholar
  51. Ide, A., Rodriguez, E., Zaidel, E., & Aboitiz, F. (1996). Bifurcation patterns in the human sylvian fissure: Hemispheric and sex differences. Cerebral Cortex, 6, 717–725.PubMedGoogle Scholar
  52. Jäncke, L., & Steinmetz, H. (2004). Anatomical brain asymmetries and their relevance for functional asymmetries. In K. Hughdahl & R. J. Davidson (Eds.), The asymmetrical brain (pp. 187–229). Cambridge, MA: MIT Press.Google Scholar
  53. Kennedy, D. N., Lange, N., Makris, N., Bates, J., Meyer, J., & Caviness, V. S., Jr. (1998). Gyri of the human neocortex: An MRI-based analysis of volume and variance. Cerebral Cortex, 8, 372–384.PubMedGoogle Scholar
  54. Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4, 107–118.PubMedGoogle Scholar
  55. LeMay, M., & Culebras, A. (1972). Human brain—morphologic differences in the hemispheres demonstrable by carotid arteriography. New England Journal of Medicine, 287, 168–170.PubMedGoogle Scholar
  56. Leonard, C. M., Voeller, K. K., Lombardino, L. J., Morris, M. K., Hynd, G. W., Alexander, A. W., et al. (1993). Anomalous cerebral structure in dyslexia revealed with magnetic resonance imaging. Archives of Neurology, 50, 461–469.PubMedGoogle Scholar
  57. Leonard, C. M., Puranik, C., Kuldau, J. M., & Lombardino, L. J. (1998). Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: Where is it? Cerebral Cortex, 8, 397–406.PubMedGoogle Scholar
  58. Liégeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114(1A), 139–151.PubMedGoogle Scholar
  59. Liégeois-Chauvel, C., Musolino, A., Badier, J. M., Marquis, P., & Chauvel, P. (1994). Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalography and Clinical Neurophysiology, 92, 204–214.PubMedGoogle Scholar
  60. Locke, S., Angevine, J. B., Jr., & Marin, O. S. (1962). Projection of the magnocellular medical geniculate nucleus in man. Brain, 85, 319–330.PubMedGoogle Scholar
  61. Loftus, W. C., Tramo, M. J., Thomas, C. E., Green, R. L., Nordgren, R. A., & Gazzaniga, M. S. (1993). Three-dimensional quantitative analysis of hemispheric asymmetry in the human superior temporal region. Cerebral Cortex, 3, 348–355.PubMedGoogle Scholar
  62. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., & Rizzolatti, G. (1991). Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. Journal of Comparative Neurology, 311, 463–482.PubMedGoogle Scholar
  63. Maeder, P. P., Meuli, R. A., Adriani, M., Bellmann, A., Fornari, E., Thiran, J. P., et al. (2001). Distinct pathways involved in sound recognition and localization: A human fMRI study. NeuroImage, 14, 802–816.PubMedGoogle Scholar
  64. Matelli, M., Luppino, G., & Rizzolatti, G. (1991). Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. Journal of Comparative Neurology, 311, 445–462.PubMedGoogle Scholar
  65. Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology, 335, 437–459.PubMedGoogle Scholar
  66. Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., & Zilles, K. (2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage, 13, 684–701.PubMedGoogle Scholar
  67. Morosan, P., Rademacher, J., Palomero-Gallagher, N., & Zilles, K. (2005a). Anatomical organization of the human auditory cortex: Cytoarchitecture and transmitter receptors. In P.Heil, E. König, & E. Budinger (Eds.), The auditory cortex: Towards a synthesis of human and animal research (pp. 27–50). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  68. Morosan, P., Schleicher, A., Amunts, K., & Zilles, K. (2005b). Multimodal architectonic mapping of human superior temporal gyrus. Anatomy and Embryology, 210, 401–406.PubMedGoogle Scholar
  69. Musiek, F. E. & Reeves, A. G. (1990). Asymmetries of the auditory areas of the cerebrum. Journal of the American Academy of Audiology, 1, 240–245.PubMedGoogle Scholar
  70. Nakahara, H., Yamada, S., Mizutani, T., & Murayama, S. (2000). Identification of the primary auditory field in archival human brain tissue via immunocytochemistry of parvalbumin. Neuroscience Letters, 286, 29–32.PubMedGoogle Scholar
  71. Nissl, F. (1894). Über die sogenannten Granula der Nervenzellen. Neurologisches Zentralblatt, 13, 676–685.Google Scholar
  72. Ong, W. Y., & Garey, L. J. (1990). Neuronal architecture of the human temporal cortex. Anatomy and Embryology, 181, 351–364.PubMedGoogle Scholar
  73. Parker, G. J., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A., Ciccarelli, O., & Lambon Ralph, M. A. (2005). Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage, 24, 656–666.PubMedGoogle Scholar
  74. Penhune, V. B., Zatorre, R. J., MacDonald, J. D., & Evans, A. C. (1996). Interhemispheric anatomical differences in human primary auditory cortex: Probabilistic mapping and volume measurement from magnetic resonance scans. Cerebral Cortex, 6, 661–672.PubMedGoogle Scholar
  75. Pfeifer, R. A. (1920). Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Leipzig: Teubner.Google Scholar
  76. Pfeifer, R. A. (1936). Pathologie der Hörstrahlung und der corticalen Hörsphäre. In O.Bunke & O. Foerster (Eds.), Handbuch der Neurologie (pp. 533–626). Berlin: Springer.Google Scholar
  77. Rademacher, J., Caviness, V. S., Jr., Steinmetz, H., & Galaburda, A. M. (1993). Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex, 3, 313–329.PubMedGoogle Scholar
  78. Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H. J., et al. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex 9. NeuroImage, 13, 669–683.PubMedGoogle Scholar
  79. Rademacher, J., Burgel, U., & Zilles, K. (2002). Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage, 17, 142–160.PubMedGoogle Scholar
  80. Rivier, F., & Clarke, S. (1997). Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: Evidence for multiple auditory areas. NeuroImage, 6, 288–304.PubMedGoogle Scholar
  81. Rojas, D. C., Teale, P., Sheeder, J., Simon, J., & Reite, M. (1997). Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. American Journal of Psychiatry, 154, 1655–1662.PubMedGoogle Scholar
  82. Romani, G. L., Williamson, S. J., & Kaufman, L. (1982). Tonotopic organization of the human auditory cortex. Science, 216, 1339–1340.PubMedGoogle Scholar
  83. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2, 1131–1136.PubMedGoogle Scholar
  84. Rubens, A. B., Mahowald, M. W., & Hutton, J. T. (1976). Asymmetry of the lateral (sylvian) fissures in man. Neurology, 26, 620–624.PubMedGoogle Scholar
  85. Sacco, C. B., Tardif, E., Genoud, C., Probst, A., Tolnay, M., Janzer, R. C., et al. (2009). GABA receptor subunits in human auditory cortex in normal and stroke cases. Acta Neurobiologiae Experimentalis (Warsaw), 69, 469–493.Google Scholar
  86. Sarkissov, S. A., Filimonoff, I. N., Kononowa, I. P., Preobrazeanskaja, N. S., & Kukuewa, L. A. (1955). Atlas of the cytoarchitectonics of the human cerebral cortex (in Russian). Moscow: Medgiz.Google Scholar
  87. Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699–701.PubMedGoogle Scholar
  88. Schleicher, A., Amunts, K., Geyer, S., Morosan, P., & Zilles, K. (1999). Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. NeuroImage, 9, 165–177.PubMedGoogle Scholar
  89. Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S. B., Kowalski, T., de Vos, K. et al. (2005). Quantitative architectural analysis: A new approach to cortical mapping. Anatomy and Embryology, 210, 373–386.PubMedGoogle Scholar
  90. Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688–694.PubMedGoogle Scholar
  91. Schneider, P., Sluming, V., Roberts, N., Bleeck, S., & Rupp, A. (2005). Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Annals of the New York Academy of Sciences, 1060, 387–394.PubMedGoogle Scholar
  92. Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26, 100–107.PubMedGoogle Scholar
  93. Seldon, H. L. (1981). Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Research, 229, 295–310.PubMedGoogle Scholar
  94. Smiley, J. F., Hackett, T. A., Ulbert, I., Karmas, G., Lakatos, P., Javitt, D. C., et al. (2007). Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. Journal of Comparative Neurology, 502, 894–923.PubMedGoogle Scholar
  95. Spierer, L., Bellmann-Thiran, A., Maeder, P., Murray, M. M., & Clarke, S. (2009). Hemispheric competence for auditory spatial representation. Brain, 132, 1953–1966.PubMedGoogle Scholar
  96. Steinmetz, H. (1996). Structure, functional and cerebral asymmetry: In vivo morphometry of the planum temporale. Neuroscience and Biobehavioral Reviews, 20, 587–591.PubMedGoogle Scholar
  97. Steinmetz, H., Rademacher, J., Jancke, L., Huang, Y. X., Thron, A., & Zilles, K. (1990). Total surface of temporoparietal intrasylvian cortex: Diverging left-right asymmetries. Brain and Language, 39, 357–372.PubMedGoogle Scholar
  98. Sweet, R. A., Dorph-Petersen, K. A., & Lewis, D. A. (2005). Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. Journal of Comparative Neurology, 491, 270–289.PubMedGoogle Scholar
  99. Talairach, J., & Tournoux, P. (1988). Coplanar stereotaxic atlas of the human brain. Stuttgart: Thieme.Google Scholar
  100. Talavage, T. M., Sereno, M. I., Melcher, J. R., Ledden, P. J., Rosen, B. R., & Dale, A. M. (2004). Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of Neurophysiology, 91, 1282–1296.PubMedGoogle Scholar
  101. Tardif, E., & Clarke, S. (2001). Intrinsic connectivity of human auditory areas: A tracing study with DiI. European Journal of Neuroscience, 13, 1045–1050.PubMedGoogle Scholar
  102. Tardif, E., & Clarke, S. (2002). Commissural connections of human superior colliculus. Neuroscience, 111, 363–372.PubMedGoogle Scholar
  103. Tardif, E., Chiry, O., Probst, A., Magistretti, P. J., & Clarke, S. (2003). Patterns of calcium-binding proteins in human inferior colliculus: Identification of subdivisions and evidence for putative parallel systems. Neuroscience, 116, 1111–1121.PubMedGoogle Scholar
  104. Tardif, E., Delacuisine, B., Probst, A., & Clarke, S. (2005). Intrinsic connectivity of human superior colliculus. Experimental Brain Research, 166, 316–324.Google Scholar
  105. Tardif, E., Probst, A., & Clarke, S. (2007). Laminar specificity of intrinsic connections in Broca’s area. Cerebral Cortex, 17(12), 2949–2960PubMedGoogle Scholar
  106. Upadhyay, J., Ducros, M., Knaus, T. A., Lindgren, K. A., Silver, A., Tager-Flusberg, H., et al. (2007). Function and connectivity in human primary auditory cortex: A combined fMRI and DTI study at 3 Tesla. Cerebral Cortex, 17, 2420–2432.PubMedGoogle Scholar
  107. Van Buren, J. M., & C. Borke (1972). Variations and connections of the human thalamus. Berlin: Springer-Verlag.Google Scholar
  108. Van der Zwaag, W., Gentile, G., Gruetter, R., Spierer, L., & Clarke, S. (2011). Where sound position influences sound object representations: A 7T fMRI study. NeuroImage, 54, 1803–1811.Google Scholar
  109. Viceic, D., Fornari, E., Thiran, J. P., Maeder, P. P., Meuli, R., Adriani, M., et al. (2006). Human auditory belt areas specialized in sound recognition: A functional magnetic resonance imaging study. NeuroReport, 17, 1659–1662.PubMedGoogle Scholar
  110. Vogt, C., & Vogt, O. (1919). Allgemeinere Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie, 25, 292–398.Google Scholar
  111. von Economo, C., & Horn, L. (1930). Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift für Neurologie und Psychiatrie, 130, 678–757.Google Scholar
  112. von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Grosshirnrinde des erwachsenen Menschen. Berlin: Springer.Google Scholar
  113. Wallace, M. N., Johnston, P. W., & Palmer, A. R. (2002). Histochemical identification of cortical areas in the auditory region of the human brain. Experimental Brain Research, 143, 499–508.Google Scholar
  114. Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., et al. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. Journal of Neuroscience, 29, 61–69.PubMedGoogle Scholar
  115. Weigert, C. (1882). Über eine neue Untersuchungsmethode des Centralnervensystems. Zentralblatt für die medizinischen Wissenschaften, 20, 753–774.Google Scholar
  116. Westbury, C. F., Zatorre, R. J., & Evans, A. C. (1999). Quantifying variability in the planum temporale: A probability map. Cerebral Cortex, 9, 392–405.PubMedGoogle Scholar
  117. Wiesendanger, E., Clarke, S., Kraftsik, R., & Tardif, E. (2004). Topography of cortico-striatal connections in man: Anatomical evidence for parallel organization. European Journal of Neuroscience, 20, 1915–1922.PubMedGoogle Scholar
  118. Yamamoto, T., Williamson, S. J., Kaufman, L., Nicholson, C., & Llinas, R. (1988). Magnetic localization of neuronal activity in the human brain. Proceedings of the National Academy of Sciences of the U S A, 85, 8732–8736.Google Scholar
  119. Zilles, K., Dabringhaus, A., Geyer, S., Amunts, K., Qu, M., Schleicher, A., et al. (1996). Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats. Neuroscience and Biobehavioral Reviews, 20, 593–605.PubMedGoogle Scholar
  120. Zilles, K., Palomero-Gallagher, N., Grefkes, C., Scheperjans, F., Boy, C., Amunts, K., et al. (2002a). Architectonics of the human cerebral cortex and transmitter receptor fingerprints: Reconciling functional neuroanatomy and neurochemistry. European Neuropsychopharmacology, 12, 587–599.PubMedGoogle Scholar
  121. Zilles, K., Schleicher, A., Palomero-Gallagher, N., & Amunts, K. (2002b). Quantitative analysis of cyto- and receptor architecture of the human brain. In J. C.Mazziotta & A. Toga (Eds.), Brain mapping: The methods (pp. 573–602). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Service de Neurospychologie et de Neuroréhabilitation, CHUVLausanneSwitzerland
  2. 2.Institute of Neurosciences and Medicine (INM-1)Research Centre JülichJülichGermany

Personalised recommendations