Cortical Processing of Music

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 43)

Abstract

Here’s a commonplace experience: you are walking in a shopping mall when you hear a tune being played in the background. It takes you a moment but then you realize that it is a song that you last heard 20 years ago, which has now been redone—perhaps unfortunately—as an advertising jingle. Although the aesthetic experience associated with this little vignette may not be high, the ease with which our nervous system can carry out this kind of analysis belies the complexity involved. Consider: the music you hear is embedded in a background of irrelevant noise, so you need first to strip it away; you recognize the pattern of sound as the tune you are familiar with, even though none of the actual elements reaching your ear are the same as what you had originally encoded—the tempo, musical key, and instrument timbres may all be different; if the song has lyrics you must also separate the tonal component from the speech component to process each of them; the experience may also lead to retrieval of memories associated with the song; you could also begin to sing along with it, which means you must convert the information contained in the sound waves you hear to a set of motor commands that will produce similar sound waves from your vocal musculature; finally the song may lead you to experience emotion, which could range from annoyance to pleasure. The mechanisms that allow this complex cognitive chain of events to occur are far from being fully understood. This chapter aims to give readers an overview of what is known about the role of auditory cortex in processing and production of musical sounds, and an indication of the many open questions that remain. Understanding the neural and cognitive mechanisms involved in tonal and musical processes will yield insights into fundamental aspects of neural organization and function that would otherwise be difficult to obtain.

Keywords

Auditory Cortex Dorsal Stream Musical Training Primary Auditory Cortex Inferior Frontal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the USA, 98(21), 12301–12306.PubMedGoogle Scholar
  2. Anderson, B., Southern, B. D., & Powers, R. E. (1999). Anatomic asymmetries of the posterior superior temporal lobes: A postmortem study. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 12, 247–254.Google Scholar
  3. Attneave, F., & Olson, R. K. (1971). Pitch as a medium: A new approach to psychophysical scaling. American Journal of Psychology, 84, 147–166.PubMedGoogle Scholar
  4. Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain, 125(2), 238–251.PubMedGoogle Scholar
  5. Bailey, J., & Penhune, V. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Experimental Brain Research, 204, 91–101.Google Scholar
  6. Bangert, M. W., & Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4(1), 26.PubMedGoogle Scholar
  7. Belin, P., & Zatorre, R. J. (2000). ‘What’, ‘where‘ and ‘how’ in auditory cortex. Nature Neuroscience, 3(10), 965–966.PubMedGoogle Scholar
  8. Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436(7054), 1161.PubMedGoogle Scholar
  9. Bendor, D., & Wang, X. (2006). Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology, 16(4), 391–399.PubMedGoogle Scholar
  10. Bengtsson, S., Ehrsson, H., Forssberg, H., & Ullén, F. (2004). Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. European Journal of Neuroscience, 19, 2591–2602.PubMedGoogle Scholar
  11. Bermudez, P., Evans, A. C., Lerch, J. P., & Zatorre, R. J. (2009). Neuro-anatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583–1596.PubMedGoogle Scholar
  12. Beurze, S. M., de Lange, F. P., Toni, I., & Medendorp, W. P. (2007). Integration of target and effector information in the human brain during reach planning. Journal of Neurophysiology, 97(1), 188–199.PubMedGoogle Scholar
  13. Bidelman, G. M., & Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience, 29(42), 13165–13171.PubMedGoogle Scholar
  14. Binder, J., Frost, J., Hammeke, T., Bellgowan, P., Springer, J., Kaufman, J., & Possing, J. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512–528.PubMedGoogle Scholar
  15. Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389.PubMedGoogle Scholar
  16. Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cerebral Cortex, 14(10), 1088–1099.PubMedGoogle Scholar
  17. Brechmann, A., & Scheich, H. (2005). Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex, 15(5), 578–587.PubMedGoogle Scholar
  18. Brown, M., Irvine, D. R. F., & Park, V. N. (2004a). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.PubMedGoogle Scholar
  19. Brown, S., Martinez, M. J., Hodges, D. A., Fox, P. T., & Parsons, L. M. (2004b). The song system of the human brain. Brain Research: Cognitive Brain Research, 20(3), 363–375.PubMedGoogle Scholar
  20. Buonomano, D., & Merzenich, M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.PubMedGoogle Scholar
  21. Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287(4), 422–445.PubMedGoogle Scholar
  22. Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex, 16(6), 835–848.PubMedGoogle Scholar
  23. Chance, S. A., Casanova, M. F., Switala, A. E., & Crow, T. J. (2006). Minicolumnar structure in Heschl’s gyrus and planum temporale: Asymmetries in relation to sex and callosal fiber number. Neuroscience, 143(4), 1041–1050.PubMedGoogle Scholar
  24. Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781.PubMedGoogle Scholar
  25. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.PubMedGoogle Scholar
  26. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226–239.PubMedGoogle Scholar
  27. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2009). The role of auditory and premotor cortex in sensorimotor transformations. Annals of the New York Academy of Sciences, 1169, 15–34.PubMedGoogle Scholar
  28. Clarke, S., Bellmann Thiran, A., Maeder, P., Adriani, M., Vernet, O., Regli, L., et al. (2002). What and where in human audition: Selective deficits following focal hemispheric lesions. Experimental Brain Research, 147(1), 8–15.Google Scholar
  29. Critchley, M., & Henson, R. A., Eds. (1977). Music and the brain: Studies in the neurology of music. London: Heinemann.Google Scholar
  30. Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44, 2668–2684.PubMedGoogle Scholar
  31. Cupchik, G. C., Phillips, K., & Hill, D. S. (2001). Shared processes in spatial rotation and musical permutation. Brain and Cognition, 46(3), 373–382.PubMedGoogle Scholar
  32. Dahmen, J. C., & King, A. J. (2007). Learning to hear: Plasticity of auditory cortical processing. Current Opinion in Neurobiology, 17(4), 456–464.PubMedGoogle Scholar
  33. Dalla Bella, S., Giguere, J. F., & Peretz, I. (2009). Singing in congenital amusia. Journal of the Acoustical Society of America, 126(1), 414–424.PubMedGoogle Scholar
  34. Dehaene-Lambertz, G., Pallier, C., Serniclaes, W., Sprenger-Charolles, L., Jobert, A., & Dehaene, S. (2005). Neural correlates of switching from auditory to speech perception. NeuroImage, 24(1), 21–33.PubMedGoogle Scholar
  35. Dorsaint-Pierre, R., Penhune, V. B., Watkins, K. E., Neelin, P., Lerch, J. P., Bouffard, M., & Zatorre, R. J. (2006). Asymmetries of the planum temporale and Heschl’s gyrus: Relationship to language lateralization. Brain, 129(5), 1164–1176.PubMedGoogle Scholar
  36. Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921.PubMedGoogle Scholar
  37. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85, 341–354.Google Scholar
  38. Dowling, W. J., & Harwood, D. (1986). Music cognition. Orlando, FL: Academic Press.Google Scholar
  39. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311–312.PubMedGoogle Scholar
  40. Drayna, D., Manichaikul, A., de Lange, M., Snieder, H., & Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science, 291, 1969–1972.PubMedGoogle Scholar
  41. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.PubMedGoogle Scholar
  42. Foster, N. E. V., & Zatorre, R. J. (2010a). Cortical structure predicts success in performing musical transformation judgments. NeuroImage, 53(1), 26–36.PubMedGoogle Scholar
  43. Foster, N. E. V., & Zatorre, R. J. (2010b). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex, 20(6), 1350–1359.PubMedGoogle Scholar
  44. Foxton, J. M., Dean, J. L., Gee, R., Peretz, I., & Griffiths, T. D. (2004). Characterization of deficits in pitch perception underlying ‘tone deafness’. Brain, 127(4), 801–810.PubMedGoogle Scholar
  45. Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28, 11435–11444.PubMedGoogle Scholar
  46. Friederici, A. D., Ruschemeyer, S.-A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170–177.PubMedGoogle Scholar
  47. Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17, 1578–1592.PubMedGoogle Scholar
  48. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129(10), 2593–2608.PubMedGoogle Scholar
  49. Gaab, N., Gaser, C., & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. NeuroImage, 31(1), 255–263.PubMedGoogle Scholar
  50. Galaburda, A., & Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190(3), 597–610.PubMedGoogle Scholar
  51. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233.PubMedGoogle Scholar
  52. Galuske, R., Schlote, W., Bratzke, H., & Singer, W. (2000). Interhemispheric asymmetries of the modular structure in human temporal cortex. Science, 289, 1946–1949.PubMedGoogle Scholar
  53. Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240–9245.PubMedGoogle Scholar
  54. Giard, M. H., Lavikahen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., & Näätänen, R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7(2), 133–143.Google Scholar
  55. Giraud, A. L., Kleinschmidt, A., Poeppel, D., Lund, T. E., Frackowiak, R. S., & Laufs, H. (2007). Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56(6), 1127–1134.PubMedGoogle Scholar
  56. Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: Reallocation of neural substrates. NeuroImage, 21, 494–506.PubMedGoogle Scholar
  57. Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–582.PubMedGoogle Scholar
  58. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.PubMedGoogle Scholar
  59. Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207, 3–17.PubMedGoogle Scholar
  60. Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25(7), 348–353.PubMedGoogle Scholar
  61. Griffiths, T. D., Büchel, C., Frackowiak, R. S. J., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1, 422–427.PubMedGoogle Scholar
  62. Griffiths, T. D., Johnsrude, I. S., Dean, J. L., & Green, G. G. R. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport, 10, 3825–3830.PubMedGoogle Scholar
  63. Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K. V., Kawasaki, H., Oya, H., et al. (2010). Direct recordings of pitch responses from human auditory cortex. Current Biology, 20(12), 1128–1132.PubMedGoogle Scholar
  64. Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage, 15(1), 207–216.PubMedGoogle Scholar
  65. Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S., & Rupp, A. (2004). Temporal dynamics of pitch in human auditory cortex. NeuroImage, 22(2), 755–766.PubMedGoogle Scholar
  66. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394(4), 475–495.PubMedGoogle Scholar
  67. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817(1–2), 45–58.PubMedGoogle Scholar
  68. Hall, D. A., & Plack, C. J. (2009). Pitch processing sites in the human auditory brain. Cerebral Cortex, 19(3), 576–585.PubMedGoogle Scholar
  69. Hall, D. A., Johnsrude, I. S., Haggard, M. P., Palmer, A. R., Akeroyd, M. A., & Summerfield, A. Q. (2002). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 12(2), 140–149.PubMedGoogle Scholar
  70. Hall, D. A., Edmondson-Jones, A. M., & Fridriksson, J. (2006). Periodicity and frequency coding in human auditory cortex. European Journal of Neuroscience, 24(12), 3601–3610.PubMedGoogle Scholar
  71. Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.PubMedGoogle Scholar
  72. Herholz, S. C., Lappe, C., Knief, A., & Pantev, C. (2008). Neural basis of music imagery and the effect of musical expertise. European Journal of Neuroscience, 28(11), 2352–2360.PubMedGoogle Scholar
  73. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138.PubMedGoogle Scholar
  74. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.PubMedGoogle Scholar
  75. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews: Neuroscience, 8(5), 393–402.PubMedGoogle Scholar
  76. Hillyard, S., Hink, R., Schwent, V., & Picton, T. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedGoogle Scholar
  77. Huron, D. (2006). Sweet anticipation: Music and the psychology of expectaction. Cambridge, MA: MIT Press.Google Scholar
  78. Hutchins, S., Zarate, J. M., Zatorre, R. J., & Peretz, I. (2010). An acoustical study of vocal pitch matching in congenital amusia. Journal of the Acoustical Society of America, 127(1), 504–512.PubMedGoogle Scholar
  79. Hutsler, J., & Gazzaniga, M. (1996). Acetylcholinesterase staining in human auditory and language cortices—regional variation of structural features. Cerebral Cortex, 6, 260–270.PubMedGoogle Scholar
  80. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360.PubMedGoogle Scholar
  81. Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., & Peretz, I. (2006). Morphometry of the amusic brain: A two-site study. Brain, 129, 2562–2570.PubMedGoogle Scholar
  82. Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: When less is better than more. Journal of Neuroscience, 27(47), 13028–13032.PubMedGoogle Scholar
  83. Hyde, K. L., Peretz, I., & Zatorre, R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632–639.PubMedGoogle Scholar
  84. Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29(10), 3019–3025.PubMedGoogle Scholar
  85. Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence of an abnormal neural network for pitch processing in congenital amusia. Cerebral Cortex, 21(2), 292–299.PubMedGoogle Scholar
  86. Irvine, D. R. F. (2007). Auditory cortical plasticity: Does it provide evidence for cognitive processing in the auditory cortex? Hearing Research, 229, 158–170.PubMedGoogle Scholar
  87. Jamison, H. L., Watkins, K. E., Bishop, D. V. M., & Matthews, P. M. (2006). Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex, 16(9), 1266–1275.PubMedGoogle Scholar
  88. Jäncke, L., Gaab, N., Wüstenberg, T., Scheich, H., & Heinze, H.-J. (2001). Short-term functional plasticity in the human auditory cortex: An fMRI study. Cognitive Brain Research, 12, 479–485.PubMedGoogle Scholar
  89. Johnson, J. A., & Zatorre, R. J. (2005). Attention to simultaneous unrelated auditory and visual events: Behavioral and neural correlates. Cerebral Cortex, 15, 1609–1620.PubMedGoogle Scholar
  90. Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155–163.PubMedGoogle Scholar
  91. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.PubMedGoogle Scholar
  92. Katahira, K., Abla, D., Masuda, S., & Okanoya, K. (2008). Feedback-based error monitoring processes during musical performance: An ERP study. Neuroscience Research, 61(1), 120–128.PubMedGoogle Scholar
  93. Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089–1102.PubMedGoogle Scholar
  94. Kleber, B., Birbaumer, N., Veit, R., Trevorrow, T., & Lotze, M. (2007). Overt and imagined singing of an Italian aria. NeuroImage, 36(3), 889–900.PubMedGoogle Scholar
  95. Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20(5), 1144–1152.PubMedGoogle Scholar
  96. Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.PubMedGoogle Scholar
  97. Koelsch, S., Gunter, T. C., & Friederici, A. D. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 13, 520–541.Google Scholar
  98. Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17, 956–966.PubMedGoogle Scholar
  99. Koelsch, S., Gunter, T., Schröger, E., & Friederici, A. D. (2003). Processing tonal modulations: An ERP study. Journal of Cognitive Neuroscience, 15, 1149–1159.PubMedGoogle Scholar
  100. Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068–1076.PubMedGoogle Scholar
  101. Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56(1), 259–269.PubMedGoogle Scholar
  102. Kraus, N., McGee, T., Littman, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72, 1270–1277.PubMedGoogle Scholar
  103. Kraus, N., McGee, T., Carrell, T., King, C., Tremblay, K., & Nicol, T. (1995). Central auditory system plasticity associated with speech discrimination training. Journal of Cognitive Neuroscience, 7, 25–32.Google Scholar
  104. Krumbholz, K., Patterson, R. D., Seither-Preisler, A., Lammertmann, C., & Lutkenhoner, B. (2003). Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex, 13(7), 765–772.PubMedGoogle Scholar
  105. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.Google Scholar
  106. Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.PubMedGoogle Scholar
  107. Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28(39), 9632–9639.PubMedGoogle Scholar
  108. Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.Google Scholar
  109. Leino, S., Brattico, E., Tervaniemi, M., & Vuust, P. (2007). Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research, 1142, 169–177.PubMedGoogle Scholar
  110. Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121, 1853–1867.PubMedGoogle Scholar
  111. Loui, P., Guenther, F. H., Mathys, C., & Schlaug, G. (2008). Action-perception mismatch in tone-deafness. Current Biology, 18(8), R331–R332.PubMedGoogle Scholar
  112. Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29(33), 10215–10220.PubMedGoogle Scholar
  113. Maess, B., Koelsch, S., Gunter, T., & Friederici, A. D. (2001). “Musical syntax” is processed in the area of Broca: An MEG-study. Nature Neuroscience, 4, 540–545.PubMedGoogle Scholar
  114. Mandell, J., Schulze, K., & Schlaug, G. (2007). Congenital amusia: An auditory-motor feedback disorder? Restor Neurology and Neuroscience, 25(3–4), 323–334.Google Scholar
  115. Margulis, E. H., Mlsna, L. M., Uppunda, A. K., Parrish, T. B., & Wong, P. C. M. (2009). Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping, 30(1), 267–275.PubMedGoogle Scholar
  116. Mars, R. B., Piekema, C., Coles, M. G., Hulstijn, W., & Toni, I. (2007). On the programming and reprogramming of actions. Cerebral Cortex, 17(12), 2972–2979.PubMedGoogle Scholar
  117. McDermott, J. H., & Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4), 452–463.PubMedGoogle Scholar
  118. Menning, H., Roberts, L. E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 11, 817–822.PubMedGoogle Scholar
  119. Milner, B. A. (1962). Laterality effects in audition. In V. Mountcastle (Ed.), Interhemispheric relations and cerebral dominance (pp. 177–195). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  120. Molholm, S., Martinez, A., Ritter, W., Javitt, D. C., & Foxe, J. J. (2005). The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex, 15(5), 545–551.PubMedGoogle Scholar
  121. Morillon, B., Lehongre, K., Frackowiak, R. S., Ducorps, A., Kleinschmidt, A., Poeppel, D., & Giraud, A. L. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proceedings of the National Academy of Sciences of the USA, 107(43), 18688–18693.PubMedGoogle Scholar
  122. Möttönen, R., Calvert, G. A., Jääskeläinen, I. P., Matthews, P. M., Thesen, T., Tuomainen, J., & Sams, M. (2006). Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. NeuroImage, 30, 563–569.PubMedGoogle Scholar
  123. Münte, T. F., Kohlmetz, C., Nager, W., & Altenmüller, E. (2001). Superior auditory spatial tuning in conductors. Nature, 409, 580.PubMedGoogle Scholar
  124. Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the USA, 104(40), 15894–15898.PubMedGoogle Scholar
  125. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.PubMedGoogle Scholar
  126. Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., et al. (2001). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11(8), 754–760.PubMedGoogle Scholar
  127. Okamoto, H., Stracke, H., Draganova, R., & Pantev, C. (2009). Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cerebral Cortex, 19(10), 2290–2297.PubMedGoogle Scholar
  128. Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D. Y., & Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15(1), 167–174.PubMedGoogle Scholar
  129. Overath, T., Cusack, R., Kumar, S., Von Kriegstein, K., Warren, J. D., Grube, M., et al. (2007). An information theoretic characterisation of auditory encoding. PLoS Biology, 5(11), 2723–2732.Google Scholar
  130. Overath, T., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2008). Encoding of spectral correlation over time in auditory cortex. Journal of Neuroscience, 28(49), 13268–13273.PubMedGoogle Scholar
  131. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.PubMedGoogle Scholar
  132. Pantev, C., Roberts, L., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12, 169–174.PubMedGoogle Scholar
  133. Patel, A. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681.PubMedGoogle Scholar
  134. Patel, A., & Balaban, E. (2001). Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nature Neuroscience, 4, 839–844.PubMedGoogle Scholar
  135. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  136. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.PubMedGoogle Scholar
  137. Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24(30), 6810–6815.PubMedGoogle Scholar
  138. Penhune, V. B., Zatorre, R. J., MacDonald, J. D., & Evans, A. C. (1996). Interhemispheric anatomical differences in human primary auditory cortex: Probabilistic mapping and volume measurement from magnetic resonance scans. Cerebral Cortex, 6, 661–672.PubMedGoogle Scholar
  139. Penhune, V. B., Cismaru, R., Dorsaint-Pierre, R., Petitto, L. A., & Zatorre, R. J. (2003). The morphometry of auditory cortex in the congenitally deaf measured using MRI. NeuroImage, 20, 1215–1225.PubMedGoogle Scholar
  140. Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7, 362–367.PubMedGoogle Scholar
  141. Peretz, I., Brattico, E., & Tervaniemi, M. (2005). Abnormal electrical brain responses to pitch in congenital amusia. Annals of Neurology, 58, 478–482.PubMedGoogle Scholar
  142. Peretz, I., Cummings, S., & Dubé, M. P. (2007). The genetics of congenital amusia (tone deafness): A family-aggregation study. American Journal of Human Genetics, 81, 582–588.PubMedGoogle Scholar
  143. Peretz, I., Brattico, E., Järvenpäa, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132, 1277–1286.PubMedGoogle Scholar
  144. Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1999). Localization of cerebral activity during simple singing. NeuroReport, 10, 3979–3984.PubMedGoogle Scholar
  145. Petkov, C. I., Kang, X., Alho, K., Bertrand, O., Yund, E. W., & Woods, D. L. (2004). Attentional modulation of human auditory cortex. Nature Neuroscience, 7, 658–663.PubMedGoogle Scholar
  146. Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as ‘asymmetric sampling in time.’ Speech Communication, 41, 245–255.Google Scholar
  147. Puschmann, S., Uppenkamp, S., Kollmeier, B., & Thiel, C. M. (2010). Dichotic pitch activates pitch processing centre in Heschl’s gyrus. NeuroImage, 49(2), 1641–1649.PubMedGoogle Scholar
  148. Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.PubMedGoogle Scholar
  149. Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97(22), 11800–11806.PubMedGoogle Scholar
  150. Recanzone, G. H., Guard, D. C., Phan, M. L., & Su, T. K. (2000). Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology, 83(5), 2723–2739.PubMedGoogle Scholar
  151. Rinne, T., Degerman, A., & Alho, K. (2005). Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study. NeuroImage, 26(1), 66–72.PubMedGoogle Scholar
  152. Rivier, F., & Clarke, S. (1997). Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: Evidence for multiple auditory areas. NeuroImage, 6(4), 288–304.PubMedGoogle Scholar
  153. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.PubMedGoogle Scholar
  154. Romanski, L. M., Tian, B., Fritz, J. B., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (2000). Reply to “What’, ‘where’ and ‘how’ in auditory cortex.’ Nature Neuroscience, 3(10), 966.Google Scholar
  155. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047–1055.PubMedGoogle Scholar
  156. Schlaug, G., Forgeard, M., Zhu, L., Norton, A., Norton, A., & Winner, E. (2009). Training-induced neuroplasticity in young children. Annals of the New York Academy of Sciences 1169, 205–208.PubMedGoogle Scholar
  157. Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688–694.PubMedGoogle Scholar
  158. Schönwiesner, M., & Zatorre, R. J. (2008). Depth electrode recordings show double dissociation between pitch processing in lateral Heschl’s gyrus and sound onset processing in medial Heschl’s gyrus. Experimental Brain Research, 187, 97–105.Google Scholar
  159. Schönwiesner, M., Rubsamen, R., & von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22(6), 1521–1528.PubMedGoogle Scholar
  160. Schönwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., & Näätänen, R. (2007). Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97(3), 2075–2082.PubMedGoogle Scholar
  161. Schroeder, C., & Foxe, J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research, 14, 187–198.PubMedGoogle Scholar
  162. Seldon, H. (1981). Structure of human auditory cortex. II: Axon distributions and morphological correlates of speech perception. Brain Research, 229, 295–310.PubMedGoogle Scholar
  163. Shepard, R. N. (1982). Geometrical approximations to the structure of musical pitch. Psychological Review, 89(4), 305–333.PubMedGoogle Scholar
  164. Sigalovsky, I. S., Fischl, B., & Melcher, J. R. (2006). Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences. NeuroImage, 32(4), 1524–1537.PubMedGoogle Scholar
  165. Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage, 17, 1613–1622.PubMedGoogle Scholar
  166. Smith, K. R., Hsieh, I.-H., Saberi, K., & Hickok, G. (2010). Auditory spatial and object processing in the human planum temporale: No evidence for selectivity. Journal of Cognitive Neuroscience, 22(4), 632–639.PubMedGoogle Scholar
  167. Stewart, L., von Kriegstein, K., Warren, J. D., & Griffiths, T. D. (2006). Music and the brain: Disorders of musical listening. Brain, 129(10), 2533–2553.PubMedGoogle Scholar
  168. Tervaniemi, M., Rytkönen, M., Schröger, E., Ilmoniemi. R. J., & Näätänen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning and Memory, 8, 295–300.Google Scholar
  169. Tervaniemi, M., Szameitat, A. J., Kruck, S., Schroger, E., Alter, K., De Baene, W., & Friederici, A. D. (2006). From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition. Journal of Neuroscience, 26(34), 8647–8652.PubMedGoogle Scholar
  170. Thivard, L., Belin, P., Zilbovicius, M., Poline, J., & Samson, Y. (2000). A cortical region sensitive to auditory spectral motion. NeuroReport, 11, 2969–2972.PubMedGoogle Scholar
  171. Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293.PubMedGoogle Scholar
  172. Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A., & von Cramon, D. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. NeuroImage, 31, 1771–1782.PubMedGoogle Scholar
  173. Tillmann, B., Jolicœur, P., Ishihara, M., Gosselin, N., Bertrand, O., Rossetti, Y., & Peretz, I. (2010). The amusic brain: Lost in music, but not in space. PLoS ONE, 5(4), e10173.PubMedGoogle Scholar
  174. Trainor, L., McDonald, K. L., & Alain, C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14, 430–442.PubMedGoogle Scholar
  175. Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.PubMedGoogle Scholar
  176. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  177. von Economo, C., & Horn, L. (1930). Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift Neurologie und Psychiatrie, 130, 678–757.Google Scholar
  178. Warren, J. D., & Griffiths, T. D. (2003). Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. Journal of Neuroscience, 23, 5799–5804.PubMedGoogle Scholar
  179. Warren, J. D., Uppenkamp, S., Patterson, R. D., & Griffiths, T. D. (2003). Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences of the USA, 100(17), 10038–10042.PubMedGoogle Scholar
  180. Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: Auditory-motor transformations and the posterior temporal plane. Trends in Neurosciences, 28(12), 636–643.PubMedGoogle Scholar
  181. Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., & Kraus, N. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. Journal of Neuroscience, 29(1), 61–69.PubMedGoogle Scholar
  182. Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect of early musical training on adult motor performance: Evidence for a sensitive period in motor learning. Experimental Brain Research, 176, 332–340.Google Scholar
  183. Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.PubMedGoogle Scholar
  184. Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. (2008). Volume of left Heschl’s gyrus and linguistic pitch learning. Cerebral Cortex, 18, 828–836.PubMedGoogle Scholar
  185. Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.PubMedGoogle Scholar
  186. Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 40(4), 1871–1887.PubMedGoogle Scholar
  187. Zarate, J. M., Delhommeau, K., Wood, S., & Zatorre, R. J. (2010a). Vocal accuracy and neural plasticity following micromelody-discrimination training. PLoS ONE, 5(6), e11181.PubMedGoogle Scholar
  188. Zarate, J. M., Wood, S., & Zatorre, R. J. (2010b). Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia, 48(2), 607–618.PubMedGoogle Scholar
  189. Zatorre, R. J. (1985). Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia, 23, 31–41.PubMedGoogle Scholar
  190. Zatorre, R. J. (1988). Pitch perception of complex tones and human temporal-lobe function. Journal of the Acoustical Society of America, 84(2), 566–572.PubMedGoogle Scholar
  191. Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946–953.PubMedGoogle Scholar
  192. Zatorre, R. J., & Gandour, J. T. (2007). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 1087–1104.Google Scholar
  193. Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience, 14(4), 1908–1919.PubMedGoogle Scholar
  194. Zatorre, R. J., Belin, P., & Penhune, V. B. (2002a). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6, 37–46.Google Scholar
  195. Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002b). Where is ‘where’ in the human auditory cortex? Nature Neuroscience, 5, 905–909.PubMedGoogle Scholar
  196. Zatorre, R. J., Bouffard, M., & Belin, P. (2004). Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience, 24(14), 3637–3642.PubMedGoogle Scholar
  197. Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.PubMedGoogle Scholar
  198. Zatorre, R. J., Halpern, A. R., & Bouffard, M. (2010). Mental reversal of imagined melodies: A role for the posterior parietal cortex. Journal of Cognitive Neuroscience, 22, 775–789.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Cognitive Neuroscience Unit, Montréal Neurological InstituteMcGill UniversityMontréalCanada
  2. 2.Department of PsychologyNew York UniversityNew YorkUSA

Personalised recommendations