Development and Application of Anticancer Nanomedicine

Chapter

Abstract

This chapter describes the state-of-the-art advances in the field of cancer nanotechnology that bring the science closer to clinical realization of nanomedicine-mediated cancer therapy and targeting. The development of various types of nanomedicines and their current status of clinical translation is reviewed, followed by the discussion of studies for improving the biodistribution, tumor penetration, and cellular uptake of nanomedicines. Recent development of nanomedicine-controlled formulation and conjugation techniques, as well as the potential and the challenge of nanomedicine-mediated cancer targeting, is also discussed.

References

  1. 1.
    Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459Google Scholar
  2. 2.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701Google Scholar
  3. 3.
    Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330Google Scholar
  4. 4.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13(1):238–252Google Scholar
  5. 5.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20Google Scholar
  6. 6.
    Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of ­polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3): 630–648Google Scholar
  7. 7.
    Park JW, Benz CC, Martin FJ (2004) Future directions of liposome- and immunoliposome-based cancer therapeutics. Sem Oncol 31(6):196–205Google Scholar
  8. 8.
    Discher DE, Ahmed F (2006) Polymersomes. Ann Rev Biomed Eng 8:323–341Google Scholar
  9. 9.
    Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217Google Scholar
  10. 10.
    Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223(1):42–46Google Scholar
  11. 11.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237Google Scholar
  12. 12.
    Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10Google Scholar
  13. 13.
    Langer R, Folkman J (1976) Polymers for sustained-release of proteins and other macromolecules. Nature 263(5580):797–800Google Scholar
  14. 14.
    Harries M, Ellis P, Harper P (2005) Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J Clin Oncol 23(31):7768–7771Google Scholar
  15. 15.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822Google Scholar
  16. 16.
    Service RF (2010) Nanaotechnology - Nanoparticle Trojan horses gallop from the lab into the clinic. Science 330(6002):314–315Google Scholar
  17. 17.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284Google Scholar
  18. 18.
    Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9Google Scholar
  19. 19.
    Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592Google Scholar
  20. 20.
    Dreher MR, Liu WG, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344Google Scholar
  21. 21.
    Goodman TT, Olive PL, Pun SH (2007) Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomedicine 2(2):265–274Google Scholar
  22. 22.
    Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255Google Scholar
  23. 23.
    Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105(33):11613–11618Google Scholar
  24. 24.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515Google Scholar
  25. 25.
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–1361Google Scholar
  26. 26.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45(8):1198–1215Google Scholar
  27. 27.
    Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, Chen SL, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595Google Scholar
  28. 28.
    Kelly JY, DeSimone JM (2008) Shape-specific, monodisperse nano-molding of protein ­particles. J Am Chem Soc 130(16):5438–5439Google Scholar
  29. 29.
    Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100Google Scholar
  30. 30.
    Wang H, Wang ST, Su H, Chen KJ, Armijo AL, Lin WY, Wang YJ, Sun J, Kamei K, Czernin J, Radu CG, Tseng HR (2009) A supramolecular approach for preparation of size-controlled nanoparticles. Angew Chem Int Ed 48(24):4344–4348Google Scholar
  31. 31.
    Wang H, Liu K, Chen K-J, Lu Y, Wang S, Lin W-Y, Guo F, Kamei K, Chen Y-C, Ohashi M, Wang M, Garcia MA, Zhao X-Z, Shen CKF, Tseng H-R (2010) A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. ACS Nano 4(10):6235–6243Google Scholar
  32. 32.
    Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912Google Scholar
  33. 33.
    Valencia PM, Basto PA, Zhang LF, Rhee M, Langer R, Farokhzad OC, Karnik R (2010) Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4(3):1671–1679Google Scholar
  34. 34.
    Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R (2011) Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23(12):H79–H83Google Scholar
  35. 35.
    Tong R, Cheng JJ (2009) Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles. J Am Chem Soc 131(13):4744–4754Google Scholar
  36. 36.
    Tong R, Cheng JJ (2008) Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew Chem Int Ed 47(26):4830–4834Google Scholar
  37. 37.
    Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E, Murdoch WJ (2010) Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 132(12):4259–4265Google Scholar
  38. 38.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021Google Scholar
  39. 39.
    Lutz JF, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv Drug Deliv Rev 60(9):958–970Google Scholar
  40. 40.
    Parrish B, Breitenkamp RB, Emrick T (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127(20):7404–7410Google Scholar
  41. 41.
    Gopin A, Ebner S, Attali B, Shabat D (2006) Enzymatic activation of second-generation dendritic prodrugs: conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjug Chem 17(6):1432–1440Google Scholar
  42. 42.
    Baskin JM, Bertozzi CR (2007) Bioorthogonal click chemistry: covalent labeling in living systems. QSAR Comb Sci 26(11–12):1211–1219Google Scholar
  43. 43.
    Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci USA 103(33):12371–12376Google Scholar
  44. 44.
    Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825–858Google Scholar
  45. 45.
    Hein CD, Liu XM, Wang D (2008) Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 25(10):2216–2230Google Scholar
  46. 46.
    Joralemon MJ, O’Reilly RK, Hawker CJ, Wooley KL (2005) Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. J Am Chem Soc 127(48):16892–16899Google Scholar
  47. 47.
    Gole A, Murphy CJ (2007) Azide-derivatized gold nanorods: functional materials for “click” chemistry. Langmuir 24(1):266–272Google Scholar
  48. 48.
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876):664–667Google Scholar
  49. 49.
    Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572Google Scholar
  50. 50.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171Google Scholar
  51. 51.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20Google Scholar
  52. 52.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy - Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46(12):6387–6392Google Scholar
  53. 53.
    Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46(1–3):149–168Google Scholar
  54. 54.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360Google Scholar
  55. 55.
    Tong R, Yala L, Fan TM, Cheng JJ (2010) The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 31(11):3043–3053Google Scholar
  56. 56.
    Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243Google Scholar
  57. 57.
    Kim B-S, Park SW, Hammond PT (2008) Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2(2):386–392Google Scholar
  58. 58.
    Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105(7):2586–2591Google Scholar
  59. 59.
    Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626Google Scholar
  60. 60.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760Google Scholar
  61. 61.
    Folkman J (2006) Angiogenesis. Ann Rev Med 57(1):1–18Google Scholar
  62. 62.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31Google Scholar
  63. 63.
    Bianca SV, Sabrina SA-S, Thea MV, Thomas B, Gert R (1998) Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 425(1):145–150Google Scholar
  64. 64.
    Prost AC, Menegaux F, Langlois P, Vidal JM, Koulibaly M, Jost JL, Duron JJ, Chigot JP, Vayre P, Aurengo A, Legrand JC, Rosselin G, Gespach C (1998) Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875Google Scholar
  65. 65.
    Singh M (1999) Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr Pharm Des 5(6):443–451Google Scholar
  66. 66.
    Li HY, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22(3):225–250MathSciNetGoogle Scholar
  67. 67.
    Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88(13):5572–5576Google Scholar
  68. 68.
    Mehren MV, Adams GP, Weiner LM (2003) Monoclonal antibody therapy for cancer. Ann Rev Med 54(1):343–369Google Scholar
  69. 69.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763Google Scholar
  70. 70.
    Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1(2):118–129Google Scholar
  71. 71.
    van Dijk MA, van de Winkel JGJ (2001) Human antibodies as next generation therapeutics. Curr Opin Chem Biol 5(4):368–374Google Scholar
  72. 72.
    Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315(5):1087–1097Google Scholar
  73. 73.
    Kitamura K, Takahashi T, Yamaguchi T, Noguchi A, Noguchi A, Takashina K-i, Tsurumi H, Inagake M, Toyokuni T, Hakomori S-I (1991) Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer chemotherapy. Cancer Res 51(16):4310–4315Google Scholar
  74. 74.
    Lee LS, Conover C, Shi C, Whitlow M, Filpula D (1999) Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconjug Chem 10(6):973–981Google Scholar
  75. 75.
    Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res 61(12):4750–4755Google Scholar
  76. 76.
    Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15(8):772–777Google Scholar
  77. 77.
    Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159Google Scholar
  78. 78.
    Schellenberger V, Wang C-w, Geething NC, Spink BJ, Campbell A, To W, Scholle MD, Yin Y, Yao Y, Bogin O, Cleland JL, Silverman J, Stemmer WPC (2009) A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol 27(12):1186–1190Google Scholar
  79. 79.
    Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA (2006) Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci USA 103(27):10180–10185Google Scholar
  80. 80.
    Xie JM, Schultz PG (2006) Innovation: a chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol 7(10):775–782Google Scholar
  81. 81.
    Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Ann Rev Med 56:555–583Google Scholar
  82. 82.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550Google Scholar
  83. 83.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510Google Scholar
  84. 84.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822Google Scholar
  85. 85.
    Cao ZH, Tong R, Mishra A, Xu WC, Wong GCL, Cheng JJ, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48(35):6494–6498Google Scholar
  86. 86.
    Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G, Scardino E, Fay WP, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22(11):1423–1428Google Scholar
  87. 87.
    Oney S, Lam RTS, Bompiani KM, Blake CM, Quick G, Heidel JD, Liu JYC, Mack BC, Davis ME, Leong KW, Sullenger BA (2009) Development of universal antidotes to control aptamer activity. Nat Med 15(10):1224–1228Google Scholar
  88. 88.
    Mi J, Liu YM, Rabbani ZN, Yang ZG, Urban JH, Sullenger BA, Clary BM (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6(1):22–24Google Scholar
  89. 89.
    Li JJ, Ji JF, Holmes LM, Burgin KE, Barton LB, Yu XZ, Wagner TE, Wei YZ (2004) Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther 11(5):363–370Google Scholar
  90. 90.
    Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ, Frechet JMJ (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106(3):685–690Google Scholar
  91. 91.
    Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, Ruoslahti E (2009) Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci USA 106(24):9815–9819Google Scholar
  92. 92.
    Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 104(3):932–936Google Scholar
  93. 93.
    Bergemann C, Muller-Schulte D, Oster J, a Brassard L, Lubbe AS (1999) Magnetic ­ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Mag Mag Mater 194(1–3):45–52Google Scholar
  94. 94.
    Eliaz RE, Szoka FC (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 61(6):2592–2601Google Scholar
  95. 95.
    Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci USA 106(19):7957–7961Google Scholar
  96. 96.
    Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc Natl Acad Sci USA 104(9):3460–3465Google Scholar
  97. 97.
    Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Amini M, Dinarvand R (2008) Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target 16(5):415–423Google Scholar
  98. 98.
    Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, Zhu G, Cheng J, Yang VW, Cheng T, Henary M, Strekowski L, Chung LW (2010) Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 16(10):2833–2844Google Scholar
  99. 99.
    Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558Google Scholar
  100. 100.
    de Menezes DEL, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58(15):3320–3330Google Scholar
  101. 101.
    Park JW, Hong KL, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4): 1172–1181Google Scholar
  102. 102.
    Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740Google Scholar
  103. 103.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 104(39):15549–15554Google Scholar
  104. 104.
    Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871Google Scholar
  105. 105.
    Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103(16):6315–6320Google Scholar
  106. 106.
    Pun SH, Tack F, Bellocq NC, Cheng JJ, Grubbs BH, Jensen GS, Davis ME, Brewster M, Janicot M, Janssens B, Floren W, Bakker A (2004) Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 3(7):641–650Google Scholar
  107. 107.
    Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070Google Scholar
  108. 108.
    Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C (2007) PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule. Bioconjug Chem 19(1):145–152Google Scholar
  109. 109.
    Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164Google Scholar
  110. 110.
    Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668Google Scholar
  111. 111.
    Choi CHJ, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 107(3):1235–1240Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Illinois at Urbana – ChampaignUrbanaUSA

Personalised recommendations