Advertisement

Aquatic Life Water Quality Criteria Derived via the UC Davis Method: I. Organophosphate Insecticides

  • Amanda J. Palumbo
  • Patti L. TenBrook
  • Tessa L. FojutEmail author
  • Isabel R. Faria
  • Ronald S. Tjeerdema
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 216)

Abstract

Water quality criteria are numeric concentrations for chemicals in water bodies that, if not exceeded, should protect aquatic wildlife from toxic effects of those chemicals. These criteria, which do not consider economics or societal values, typically are derived using the existing toxicity data. Water quality criteria can be used as a basis to set legal and enforceable water quality standards or objectives in accordance with the Clean Water Act.

Keywords

United States Environmental Protection Agency Water Quality Criterion Species Sensitivity Distribution Atrazine Concentration Mallard Duck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the following reviewers: D. McClure (CRWQCB-CVR), J. Grover (CRWQCB-CVR), S. McMillan (CDFG), J. P. Knezovich (Lawrence Livermore National Laboratory), and X. Deng (CDPR). Funding for this project was provided by the California Regional Water Quality Control Board, Central Valley Region (CRWQCB-CVR). The contents of this document do not necessarily reflect the views and policies of the CRWQCB-CVR, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Contents do not necessarily reflect the views or policies of the USEPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

References

  1. Allison DT, Hermanutz RO (1977) Toxicity of diazinon to brook trout and fathead minnows. Environmental Research Laboratory-Duluth, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN. EPA-600/3-77-060.Google Scholar
  2. Anderson TD, Lydy MJ (2002) Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem 21:1507–1514.Google Scholar
  3. Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles. Environ Poll 141:402–408.Google Scholar
  4. Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to 3 species of freshwater benthic invertebrates. Comp Biochem Phys C 110:149–155.Google Scholar
  5. Arthur JW, Zischke JA, Allen KN, Hermanutz RO (1983) Effects of diazinon on macroinvertebrates and insect emergence in outdoor experimental channels. Aquat Toxicol 4:283–301.Google Scholar
  6. Bailey HC, Draloi R, Elphick JR, Mulhall A-M, Hunt P, Tedmanson L, Lovell A (2000) Application of Ceriodaphnia dubia for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. Environ Toxicol Chem 19:88–93.Google Scholar
  7. Bailey HC, Elphick JR, Drassoi R, Lovell A (2001) Joint acute toxicity of diazinon and ammonia to Ceriodaphnia dubia. Environ Toxicol Chem 20:2877–2882.Google Scholar
  8. Bailey HC, Miller JL, Miller MJ, Wiborg LC, Deanovic L, Shed T (1997) Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ Toxicol Chem 16:2304–2308.Google Scholar
  9. Banks KE, Turner PK, Wood SH, Matthews C (2005) Increased toxicity to Ceriodaphnia dubia in mixtures of atrazine and diazinon at environmentally realistic concentrations. Ecotox Environ Safe 60:28–36.Google Scholar
  10. Banks KE, Wood SH, Matthews C, Thuesen KA (2003) Joint acute toxicity of diazinon and copper to Ceriodaphnia dubia. Environ Toxicol Chem 22:1562–1567.Google Scholar
  11. Barton JM (1988) Pesticide assessment guidelines subdivision D: product chemistry requirements for the manufacturing-use product, malathion insecticide: section 63–2 to 63–21, physical chemistry characteristics. Malathion registration standard, American Cyanamid company, Princetone, NJ. EPA MRID 40944103 and 40944104.Google Scholar
  12. Belden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274.Google Scholar
  13. Belden JB, Lydy MJ (2006) Joint toxicity of chlorpyrifos and esfenvalerate to fathead minnows and midge larvae. Environ Toxicol Chem 25:623–629.Google Scholar
  14. Beyers DW, Keefe TJ, Carlson CA (1994) Toxicity of carbaryl and malathion to two federally endangered fishes, as estimated by regression and ANOVA. Environ Toxicol Chem 13:101–107.Google Scholar
  15. Blakemore G, Burgess D (1990) Chronic toxicity of cythion to Daphnia magna under flow-through test conditions. Malathion registration standard. Columbia (MO), USA: Report by Analytical Bio-Chemistry Laboratories, Inc. submitted to U.S. Environmental Protection Agency. EPA MRID 41718401.Google Scholar
  16. Borthwick PW, Patrick JM, Middaugh DP (1985) Comparative acute sensitivities of early life stages of Atherinid fishes to chlorpyrifos and thiobencarb. Arch Environ Contam Toxicol 14:465–473.Google Scholar
  17. Bowman J (1988) Acute flow through toxicity of chlorpyrifos to bluegill sunfish (Lepomis macrochirus): project ID 37189. Columbia, MO: Unpublished study prepared by Analytical Biochemistry Laboratories, Inc. submitted to U.S. Environmental Protection Agency. EPA MRID 40840904.Google Scholar
  18. Bowman BT, Sans WW (1979) The aqueous solubility of twenty-seven insecticides and related compounds. J Environ Sci Health B 14:625–634.Google Scholar
  19. Bowman BT, Sans WW (1983a) Determination of octanol-water partitioning coefficients (Kow) of 61 organo-phsphorus and carbamate insecticides and their relationship to respective water solubility (S) values. J Environ Sci Health B 18:667–683.Google Scholar
  20. Bowman BT, Sans WW (1983b) Further water solubility determination of insecticidal compounds. J Environ Sci Health B 18:221–227.Google Scholar
  21. Brandt OM, Fujimura RW, Finlayson BJ (1993) Use of Neomysis mercedis (Crustacea, Mysidacea) for estuarine toxicity tests. Trans Am Fish Soc 122:279–288.Google Scholar
  22. Brock TCM, Crum SJH, Van Wijngaarden R, Budde BJ, Tijink J, Zuppelli A, Leeuwangh P. (1992a) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free fresh-water model-ecosystems. I. Fate and primary effects of the active ingredient chlorpyrifos. Arch Environ Contam Toxicol 23:69–84.Google Scholar
  23. Brock TCM, Van Den Bogaert M, Bos AR, Van Breukelen SWF, Reiche R, Terwoert J, Suykerbuyk REM, Roijackers RMM (1992b) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model-ecosystems. II. Secondary effects on community structure. Arch Environ Contam Toxicol 23:391–409.Google Scholar
  24. Brock TCM, Vet J, Kerkhofs MJJ, Lijzen J, Van Zuilekom WJ, Gijlstra R (1993) Fate and effects of the insecticide Dursban(R) 4e in indoor Elodea-dominated and macrophyte-free freshwater model-ecosystems. 3. Aspects of ecosystem functioning. Arch Environ Contam Toxicol 25:160–169.Google Scholar
  25. Brown R, Hugo J, Miller J, Harrington C (1997) Chlorpyrifos acute toxicity to the amphipod Hyalella azteca. Lab project No. 971095: 91/414 ANNEX I 8.3.4. 27p. Midland, MI: Unpublished study prepared by the Dow Chemical Co. submitted to U.S. Environmental Protection Agency. EPA MRID 44345601.Google Scholar
  26. Brust HF (1964) A summary of chemical and physical properties of O,O-diethyl-(3,5,6-trichloro-2-pyridyl) phosphorothioate. Unpublished report. DowElanco, Indianapolis, IN.Google Scholar
  27. Brust HF (1966) A summary of chemical and physical properties of Dursban. Down to Earth 22:21–22.Google Scholar
  28. Budavari S, O’Neil MJ, Smith A (1996) The Merck index: an encyclopedia of chemicals, drugs, and biological. Merck, Whitehouse Station, NJ.Google Scholar
  29. Budischak SA, Belden LK, Hopkins WA (2009) Relative toxicity of malathion to Trematode-infected and noninfected Rana palustris tadpoles. Arch Environ Contam Toxicol 56:123–128.Google Scholar
  30. Burgess D (1988) Acute flow through toxicity of chlorpyrifos to Daphnia magna: final Report No. 37190. 158 p. Columbia, MO: Unpublished study prepared by Analytical Biochemistry Laboratories, Inc. submitted to U.S. Environmental Protection Agency. EPA MRID 40840902.Google Scholar
  31. Call DJ (1993) Validation study of a protocol for testing the acute toxicity of pesticides to invertebrates using the apple snail (Pomacea paludosa). 57 p. Superior, WI: Unpublished study prepared by University of Wisconsin-Superior submitted to U.S. Environmental Protection Agency. Cooperative Agreement No. CR 819612–01.Google Scholar
  32. CARB (2010) California Ambient Air Quality Standards. [cited 2010 September 28]. California Air Resources Board. Available from: www.arb.ca.gov/research/aaqs/aaqs2.pdf.
  33. Carpenter M (1990) Determination of the photolysis rate of 14C malathion in pH 4 aqueous solution. Malathion registration standard. Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO. EPA MRID 42015201.Google Scholar
  34. CCME (2008) Canadian water quality guidelines for the protection of aquatic life: Chlorpyrifos. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.Google Scholar
  35. CDFG (1992a) Test No. 133, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  36. CDFG (1992b) Test No. 139, acute, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  37. CDFG (1992c) Test No. 142, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  38. CDFG (1992d) Test No. 143, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  39. CDFG (1992e) Test No. 150, acute, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  40. CDFG (1992f) Test No. 157. 96-h acute toxicity of diazinon to Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  41. CDFG (1992g) Test No. 163. 96-h acute toxicity of diazinon to Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  42. CDFG (1992h) Test No. 162. 96-h acute toxicity of diazinon to Neomysis mercedis, Aquatic Toxicity Laboratory. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  43. CDFG (1992i) Test No. 168. 96-h acute toxicity of diazinon to Neomysis mercedis. Aquatic Toxicology Laboratory. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  44. CDFG (1998a) Test No. 122. 96-h acute toxicity of diazinon to Ceriodaphnia dubia, Aquatic Toxicology Laboratory. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  45. CDFG (1998b) Test 132. 96-h toxicity of diazinon to Physa sp. Aquatic Toxicology Laboratory. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  46. CDFG (1999) Test No. 61, 7-day chronic, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA.Google Scholar
  47. CDFG (2010a) State and federally listed endangered and threatened animals of California. California Natural Diversity Database. California Department of Fish and Game, Sacramento, CA. Available from: http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/TEAnimals.pdf
  48. CDFG (2010b) State and federally listed endangered, threatened, and rare plants of California. California Natural Diversity Database. California Department of Fish and Game, Sacramento, CA. Available from: http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/TEPlants.pdf
  49. CDWR (1995) Compilation of sediment & soil standards, criteria & guidelines. Quality assurance technical document 7. California Department of Water Resources, Sacramento, CA.Google Scholar
  50. Chakrabarti A, Gennrich SM (1987) Vapor pressure of chlorpyrifos, unpublished report. DowElanco, Indianapolis, IN.Google Scholar
  51. Charizopoulos E, Papadopoulou-Mourkidou E (1999) Occurrence of pesticides in rain of the Axios River Basin, Greece. Environ Sci Technol 33:2363–2368.Google Scholar
  52. Cheminova (1988) Product chemistry – Fyfanon technical; #63 – Physical and chemical characteristic. Malathion registration standard. A/S Cheminova, Lenvig, Denmark. EPA MRID 40966603.Google Scholar
  53. Cohle P (1989) Early life stage toxicity of cythion to rainbow trout (Oncorhynchus mykiss) in a flow-through system. Malathion registration standard. Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO. EPA MRID 41422401.Google Scholar
  54. Cooke CM, Shaw G, Lester JN, Collins CD (2004) Determination of solid–liquid partition coefficients (K-d) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal. Sci Total Environ 329:197–213.Google Scholar
  55. Crommentuijn T, Sijm D, de Bruijn J, van Leeuwen K, van de Plassche E (2000) Maximum permissible and negligible concentrations for some organic substances and pesticides. J Environ Manag 58:297–312.Google Scholar
  56. CSIRO (2001) BurrliOZ, version 1.0.13. [cited 28 September 2010]. Commonwealth Scientific and Industrial Research Organization, Australia. Available from: http://www.cmis.csiro.au/Envir/burrlioz/.
  57. Cuppen JGM, Gylstra R, Vanbeusekom S, Budde BJ, Brock TCM (1995) Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. 3. Responses of macroinvertebrate detritivores, breakdown of plant litter, and final conclusions. Archiv Fur Hydrobiologie 134:157–177.Google Scholar
  58. Deneer JW, Budde BJ, Weijers A (1999) Variations in the lethal body burdens of organophosphorus compounds in the guppy. Chemosphere 38:1671–1683.Google Scholar
  59. Denton D, Wheelock C, Murray S, Deanovic L, Hammock B, Hinton D (2003) Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 22:336–341.Google Scholar
  60. Dilling WL, Lickly LC, Lickly TD, Murphy PG, McKeller RL (1984) Organic-photochemistry. 19. Quantum yields for O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioate (chlorpyrifos) and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and their environmental phtotransformation rates. Environ Sci Technol 18:540–543.Google Scholar
  61. Dortland RJ (1980) Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems (Versl. Landbouwk. Onderz., no. 898). Center for Agricultural Publishing and Documentation Agric Res Rep, Wageningen, The Netherlands. 112 p.Google Scholar
  62. Downey JR (1987) Henry’s law constant for chlorpyrifos, unpublished report. DowElanco, Indianapolis, IN.Google Scholar
  63. Drummond JN (1986) Solubility of chlorpyrifos in various solvents. DowElanco, Indianapolis, IN.Google Scholar
  64. Eaton JG (1970) Chronic malathion toxicity to bluegill (Lepomis macrochirus Rafinesque). Water Res 4:673–684.Google Scholar
  65. Eaton J, Arthur J, Hermanutz RO, Kiefer R, Mueller L, Anderson R, Erickson RJ, Nordling B, Rogers J, Pritchard H (1985) Biological effects of continuous and intermittent dosing of outdoor experimental streams with chlorpyrifos. In: Bahner RC, Hansen DJ (eds) Aquatic Toxicology and Hazard Assessment: Eighth Symposium: ASTM STP 891. American Society for Testing and Materials, Philadelphia, PA. p 85–118.Google Scholar
  66. El Arab AE, Attar A, Ballhorn L, Freitag D, Korte F (1990) Behavior of diazinon in a perch species. Chemosphere 21:193–199.Google Scholar
  67. El-Merhibi A, Kumar A, Smeaton T (2004) Role of piperonyl butoxide in the toxicity of chlorpyrifos to Ceriodaphnia dubia and Xenopus laevis. Ecotox Environ Safe 57:202–212.Google Scholar
  68. Faust SD, Gomaa HM (1972) Chemical hydrolysis of some organic phosphorus and carbamate pesticides in aquatic environments. Environ Lett 3:171.Google Scholar
  69. Felsot A, Dahm PA (1979) Sorption of organophosphorus and carbamate insecticides by soil. J Agric Food Chem 27:557–563.Google Scholar
  70. Fendinger NJ, Glotfelty DE (1988) A laboratory method for the experimental determination of air-water Henry’s law constants for several pesticides. Environ Sci Technol 22:1289–1293.Google Scholar
  71. Fendinger NJ, Glotfelty DE (1990) Henry law constants for selected pesticides, PAHs and PCBs. Environ Toxicol Chem 9:731–735.Google Scholar
  72. Fendinger NJ, Glotfelty DE, Freeman HP (1989) Comparison of 2 experimental techniques for determining air-water Henry law constants. Environ Sci Technol 23:1528–1531.Google Scholar
  73. Fernández-Casalderrey A, Ferrando MD, Andreu-Moliner E (1995) Chronic toxicity of diazinon to Daphnia magna: effects on survival, reproduction, and growth. Toxicol Environ Chem 49:25–32.Google Scholar
  74. Forbis A, Leak T (1994) Uptake, depuration and bioconcentration of 14C malathion by bluegill sunfish (Lepomis macrochirus) under flow-through test conditions. Malathion registration standard. Unpublished study prepared by Cheminova Agro A/S, Lenvig, Denmark, submitted to U.S. Environmental Protection Agency. EPA MRIDs 43106401 and 43106402.Google Scholar
  75. Freed VH, Chiou CT, Schmedding DW (1979a) Degradation of Selected Organophosphate Pesticides in Water and Soil. J Agric Food Chem 27:706–708.Google Scholar
  76. Freed VH, Schmedding D, Kohnert R, Haque R. 1979b. Physical-chemical properties of several organophosphates – Some implication in environmental and biological behavior. Pestic Biochem Physiol 10:203–211.Google Scholar
  77. Fujimura R, Finlayson B, Chapman G (1991) Evaluation of acute and chronic toxicity tests with larval striped bass. In: Mayes MA, Barron MG (eds) Aquatic Toxicology and Risk Assessment, 14th volume, STP 1124. American Society for Testing and Materials, Philadelphia, PA. p 193–211.Google Scholar
  78. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45.Google Scholar
  79. Geiger DL, Call DJ, Brooke LT (1984) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas). Lake Superior Research Institute, Superior, WI.Google Scholar
  80. Geiger DL, Call DJ, Brooke LT (eds) (1988) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, WI. 355 p.Google Scholar
  81. Giddings JM, Biever RC, Annuziato MF, Hosmer AJ (1996) Effects of diazinon on large outdoor pond microcosms. Environ Toxicol Chem 15:618–629.Google Scholar
  82. Giddings JM, Biever RC, Racke KD (1997) Fate of chlorpyrifos in outdoor pond microcosms and effects on growth and survival of bluegill sunfish. Environ Toxicol Chem 16:2353–2362.Google Scholar
  83. Gilliom RJ (2007) Pesticides in U.S. streams and groundwater. Environ Sci Technol 41:3407–3413.Google Scholar
  84. Glotfelty DE, Majewski MS, Seiber JN (1990) Distribution of several organophosphorus insecticides and their oxygen analogs in a foggy atmosphere. Environ Sci Technol 24:353–357.Google Scholar
  85. Gomaa HM, Suffet IH, Faust SD (1969) Kinetics of hydrolysis of diazinon and diazoxon. Residue Rev 29:171–190.Google Scholar
  86. Goodman LR, Hansen DJ, Cripe GM, Middaugh DP, Moore JC (1985) A new early life-stage toxicity test using the California grunion (Leuresthes tenuis) and results with chlorpyrifos. Ecotox Environ Safe 10:12–21.Google Scholar
  87. Hall LW Jr, Anderson RD (2005) Acute toxicity of diazinon to the amphipod, Gammarus pseudolimnaeus: implications for water quality criteria. Bull Environ Contam Toxicol 74:94–99.Google Scholar
  88. Harmon SM, Specht WL, Chandler GT (2003) A comparison of the daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization in routine toxicity testing in the Southeastern United States. Arch Environ Contam Toxicol 45:79–85.Google Scholar
  89. Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behaviour (Vol. 1). Academic Press Inc., London, England.Google Scholar
  90. Hermanutz RO (1978) Endrin and malathion toxicity to flagfish (Jordanella floridae). Arch Environ Contam Toxicol 7:159–168.Google Scholar
  91. Hermanutz RO, Eaton JG, Mueller LH (1985) Toxicity of endrin and malathion mixtures to flagfish (Jordanella floridae). Arch Environ Contam Toxicol 14:307–314.Google Scholar
  92. Hinckley DA, Bidleman TF, Foreman WT, Tuschall JR (1990) Determination of vapor-pressures for nonpolar and semipolar organic-compounds from gas-chromatographic retention data. J Chem Eng Data 35:232–237.Google Scholar
  93. Holcombe GW, Phipps GL, Tanner DK (1982) The acute toxicity of kelthane, Dursban, disulfoton, pydrin, and permethrin to fathead minnows Pimephales promelas and rainbow trout Salmo gairdneri. Environ Pollut A 29:167–178.Google Scholar
  94. Howard PH (1989) Handbook of environmental fate and exposure data for organic chemicals. Lewis Publishers, Chelsea, MI.Google Scholar
  95. Hughes JS (1988) Toxicity of diazinon technical to Selenastrum capricornutum, Lab Sty N. 0267 – 40-1100-1. Unpublished study prepared by CIBA-GEIGY submitted to U.S. Environmental Protection Agency. EPA MRID 40509806.Google Scholar
  96. Hummel RA, Crummet WB (1964) Solubility of ethyl O,O-diethyl O-(3,5,6-trichloro-2-pyridyl)phosphorothioate in various solvents. DowElanco, Indianapolis, IN.Google Scholar
  97. Humphrey C, Klumpp DW (2003) Toxicity of chlorpyrifos to early life history stages of eastern rainbowfish Melanotaenia splendida splendida (Peters 1866) in tropical Australia. Environ Toxicol 18:418–427.Google Scholar
  98. Hunt JW, Anderson BS, Phillips BM, Nicely PN, Tjeerdema RS, Puckett HM, Stephenson M, Worcester K, De Vlaming V (2003) Ambient toxicity due to chlorpyrifos and diazinon in a central California coastal watershed. Environ Monit Assess 82:83–112.Google Scholar
  99. Hyder AH, Overmyer JP, Noblet R (2004) Influence of developmental stage on susceptibilities and sensitivities of Simulium vittatum IS-7 and Simulium vittatum IIIL-1 (Diptera: Simuliidae) to chlorpyrifos. Environ Toxicol Chem 23:2856–2862.Google Scholar
  100. Iglesias-Jimenez E, Poveda E, Sanchez-Martin MJ, Sanchez-Camazano M (1997) Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Arch Environ Contam Toxicol 33: 117–124.Google Scholar
  101. Ingersoll CG, MacDonald DD, Wang N, Crane JL, Field LJ, Haverland PS, Kemble NE, Lindskoog RA, Severn C, Smorong DE (2000) Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines. EPA 905/R-00/007. Available from: http://www.cerc.usgs.gov/pubs/center/pdfdocs/91126.pdf.
  102. Jarvinen AW, Nordling BR, Henry ME (1983) Chronic toxicity of Dursban (chlorpyrifos) to the fathead minnow (Pimephales promelas) and the resultant acetylcholinesterase inhibition. Ecotox Environ Safe 7:423–434.Google Scholar
  103. Jarvinen AW, Tanner DK (1982) Toxicity of selected controlled release and corresponding unformulated technical grade pesticides to the fathead minnow Pimephales promelas. Environ Pollut A 27:179–195.Google Scholar
  104. Jensen LD, Gaufin AR (1964a) Effects of ten organic insecticides on two species of stonefly naiads. Trans Am Fish Soc 93:27–34.Google Scholar
  105. Jensen LD, Gaufin AR (1964b) Long term effects of organic insecticides on two species of stonefly naiads. Trans Am Fish Soc 93:357–363.Google Scholar
  106. Jin-Clark Y, Lydy MJ, Zhu KY (2002) Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera: Chironomidae). Environ Toxicol Chem 21:598–603.Google Scholar
  107. JMP (2004) Statistical discovery software, version 5.1.2. SAS Institute, Inc., Cary, NC.Google Scholar
  108. Johnson WW, Finley MT (1980) Handbook of acute toxicity of chemicals to fish and aquatic invertebrates: summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965–78. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. EPA MRID 40094602.Google Scholar
  109. Kabler K (1989) Determination of aqueous solubility of 14C malathion in pure water. Malathion registration standard. Analytical Bio-Chemistry laboratories, Inc., Columbia, MO. EPA MRID 41126201.Google Scholar
  110. Kamiya M, Kameyama K (1998) Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere 36:2337–2344.Google Scholar
  111. Kamrin MA, Montgomery JH (2000) Agrochemical and pesticide desk reference. Chapman & Hall/CRCnetBASE, Boca Raton, FL.Google Scholar
  112. Kanazawa J (1975) Uptake and excretion of organophosphorus and carbamate insecticides by freshwater fish, motsugo, Pseudorasbora parva. Bull Environ Contam Toxicol 14:346–352.Google Scholar
  113. Kanazawa J (1978) Bioconcentration ratio of diazinon by freshwater fish and snail. Bull Environ Contam Toxicol 20:613–617.Google Scholar
  114. Kanazawa J (1981) Measurement of the bioconcentration factors of pesticides by fresh-water fish and their correlation with physiochemical properties or acute toxicities. Pestic Sci 12:417–424.Google Scholar
  115. Kanazawa J (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ Toxicol Chem 8:477–484.Google Scholar
  116. Karickhoff SW (1981) Semiempirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–846.Google Scholar
  117. Keizer J, Dagostino G, Nagel R, Gramenzi F, Vittozzi L (1993) Comparative diazinon toxicity in guppy and zebra fish - different role of oxidative-metabolism. Environ Toxicol Chem 12:1243–1250.Google Scholar
  118. Keizer J, Dagostino G, Vittozzi L (1991) The importance of biotransformation in the toxicity of xenobiotics to fish. 1. Toxicity and bioaccumulation of diazinon in guppy (Poecilia reticulata) and zebra fish (Brachydanio rerio). Aquat Toxicol 21:239–254.Google Scholar
  119. Keller AE, Ruessler DS (1997) The toxicity of malathion to unionid mussels: Relationship to expected environmental concentrations. Environ Toxicol Chem 16:1028–1033.Google Scholar
  120. Kennedy HD, Walsh DF (1970) Effects of malathion on two warmwater fishes and aquatic invertebrates in ponds. U.S. Bureau of sport fisheries and wildlife technical papers 55:3–13.Google Scholar
  121. Kersting K, Van Den Brink PJ (1997) Effects of the insecticide Dursban(R)4E (active ingredient chlorpyrifos) in outdoor experimental ditches: Responses of ecosystem metabolism. Environ Toxicol Chem 16:251–259.Google Scholar
  122. Kersting K, Van Wijngaarden R (1992) Effects of chlorpyrifos on a microecosystem. Environ Toxicol Chem 11:365–372.Google Scholar
  123. Kidd H, James DR (1991) The Agrochemicals handbook. Royal Society of Chemistry. Cambridge, England.Google Scholar
  124. Kikuchi M, Sasaki Y, Wakabayashi M (2000) Screening of organophosphate insecticide pollution in water by using Daphnia magna. Ecotox Environ Safe 47:239–245.Google Scholar
  125. Kim YH, Woodrow JE, Seiber JN (1984) Evaluation of a gas-chromatographic method for calculating vapor-pressures with organo-phosphorus pesticides. J Chromatog 314:37–53.Google Scholar
  126. Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: Implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Persp 117:348–353.Google Scholar
  127. Lahr J, Badji A, Marquenie S, Schuiling E, Ndour KB, Diallo AO, Everts JW (2001) Acute toxicity of locust insecticides to two indigenous invertebrates from Sahelian temporary ponds. Ecotox Environ Safe 48:66–75.Google Scholar
  128. Landrum PF, Fisher SW, Hwang H (1999) Hazard evaluation of ten organophosphorus insecticides against the midge, Chironomus riparius via QSAR. SAR QSAR Environ Res 10:423–450.Google Scholar
  129. Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental-conditions. Environ Sci Technol 29:1246–1254.Google Scholar
  130. Lide DR (2004) CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data. CRC press, Boca Raton, FL.Google Scholar
  131. Lien NTH, Adriaens D, Janssen CR (1997) Morphological abnormalities in African catfish (Clarias gariepinus) larvae exposed to malathion. Chemosphere 35:1475–1486.Google Scholar
  132. Lydy MJ, Austin KR (2005) Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta using Chironomus tentans. Arch Environ Contam Toxicol 48:49–55.Google Scholar
  133. Lydy MJ, Belden JB, Ternes MA (1999) Effects of temperature on the toxicity of M-parathion, chlorpyrifos, and pentachlorobenzene to Chironomus tentans. Arch Environ Contam Toxicol 37:542–547.Google Scholar
  134. Macalady DL, Wolfe NL (1983) New perspectives on the hydrolytic degradation of the organophosphorothioate insecticide chlorpyrifos. J Agr Food Chem 31:1139–1147.Google Scholar
  135. Macek KJ (1975) Acute toxicity of pesticide mixtures to bluegills. Bull Environ Contam Toxicol 14:648–652.Google Scholar
  136. Macek KJ, Hogan JW, Holz DD, Walsh DF (1972) Toxicity of insecticide Dursban to fish and aquatic invertebrates in ponds. Trans Am Fish Soc 101:420–427.Google Scholar
  137. Macek KJ, Hutchinson C, Cope OB (1969) The effects of temperature on the susceptibility of bluegills and rainbow trout to selected pesticides. Bull Environ Contam Toxicol 4:174–183.Google Scholar
  138. Mackay D, Shiu WY, Ma KC, Lee SC (2006) Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd edn. CRC Press, Boca Raton, FL.Google Scholar
  139. Mahar AM, Watzin MC (2005) Effects of metal and organophosphate mixtures on Ceriodaphnia dubia survival and reproduction. Environ Toxicol Chem 24:1579–1586.Google Scholar
  140. Mansour M, Feicht EA, Behechti A, Schramm KW, Kettrup A (1999) Determination photostability of selected agrochemicals in water and soil. Chemosphere 39:575–585.Google Scholar
  141. Martin H, Worthing CR (ed) (1977) The Pesticide Manual, 5th edition, a World Compendium. The British Crop Protection Council, Thornton Heath, UK.Google Scholar
  142. Martinez-Tabche L, Galar MM, Olvera HE, Chehue RA, Lopez EL, Gomez-Olivan L, Sierra OT (2002) Toxic effect and bioavailability of malathion spiked in natural sediments from the Ignacio Ramirez dam on the snail Stagnicola sp. Ecotox Environ Safe 52:232–237.Google Scholar
  143. Maul JD, Farris JL, Lydy MJ (2006) Interaction of chemical cues from fish tissues and organophosphorous pesticides on Ceriodaphnia dubia survival. Environ Pollut 141:90–97.Google Scholar
  144. Mayer FL Jr, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication No. 160. U.S. Fish and Wildlife Service, Washington, DC. EPAMRID 40098001.Google Scholar
  145. Mayes M, Weinberg J, Rick D, Martin MD (1993) Chlorpyrifos: A life-cycle toxicity test with the fathead minnow, Pimephales promelas Rafinesque. Laboratory study number ES-DR-0043-4946-9, study ID: DECO-ES-2557B. Unpublished study prepared by the Dow Chemical Company, Midland, MI, submitted to the U.S. Environmental Protection Agency. EPA MRID 42834401.Google Scholar
  146. McConnell LL, Lenoir JS, Datta S, Seiber JN (1998) Wet deposition of current-use pesticides in the Sierra Nevada mountain range, California, USA. Environ Toxicol Chem 17:1908–1916.Google Scholar
  147. McDonald G, Karris GC, Chakrabarti A (1985) The melting behaviour, heat of melting, specific heat capacity, thermal conductivity, and vapor pressure of a recrystallized Dursban insecticide, unpublished report. DowElanco, Indianapolis, IN.Google Scholar
  148. Medina D, Prieto A, Ettiene G, Buscema I, de V AA (1999) Persistence of organophosphorus pesticide residues in Limon River waters. Bull Environ Contam Toxicol 63:39–44.Google Scholar
  149. Meikle RW, Kurihara NH, Devries DH (1983) Chlorpyrifos – the photo-decomposition rates in dilute aqueous-solution and on a surface, and the volatilization rate from a surface. Arch Environ Contam Toxicol 12:189–193.Google Scholar
  150. Meikle RW, Youngson CR (1978) Hydrolysis rate of chlorpyrifos, O-O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate, and its dimethyl analog, chlorpyrifos-methyl, in dilute aqueous-solution. Arch Environ Contam Toxicol 7:13–22.Google Scholar
  151. Melnikov NN (1971) Chemistry of pesticides. Residue Rev 36:1–480.Google Scholar
  152. Moore MT, Lizotte Jr RE, Smith Jr S (2007) Toxicity evaluation of diazinon contaminated leaf litter. Bull Environ Contam Toxicol 78:158–161.Google Scholar
  153. Nelson SM, Roline RA (1998) Evaluation of the sensitivity of rapid toxicity tests relative to daphnid acute lethality tests. Bull Environ Contam Toxicol 60:292–299.Google Scholar
  154. Nguyen LTH, Janssen CR (2002) Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): Comparative sensitivity of endpoints. Arch Environ Contam Toxicol 42:256–262.Google Scholar
  155. NOAA (1999) Sediment quality guidelines developed for the National Status and Trends Program. [cited 2010 October 1]. National Atmospheric Association. Available from: http://response.restoration.noaa.gov/book_shelf/121_sedi_qual_guide.pdf.
  156. Noblet JA, Smith LA, Suffet IH (1996) Influence of natural dissolved organic matter, temperature, and mixing on the abiotic hydrolysis of triazine and organophosphate pesticides. J Agric Food Chem 44:3685–3693.Google Scholar
  157. Norberg-King TJ (1987) Toxicity data on diazinon, aniline, 2,4-Dimethylphenol. Memorandum to Stephan C, U.S. EPA, Duluth, MN and to Call D and Brooke L, Center for Lake Superior Environmental Studies, Superior, WI. U.S. Environmental Protection Agency, Duluth, MN.Google Scholar
  158. Olvera-Hernandez E, Martinez-Tabche L, Martinez-Jeronimo F (2004) Bioavailability and effects of malathion in artificial sediments on Simocephalus vetulus (Cladocera, Daphniidae). Bull Environ Contam Toxicol 73:197–204.Google Scholar
  159. Overmyer JP, Armbrust KL, Noblet R (2003) Susceptibility of black fly larvae (Diptera: Simuliidae) to lawn-care insecticides individually and as mixtures. Environ Toxicol Chem 22:1582–1588.Google Scholar
  160. Palacio JA, Henao B, Velez JH, Gonzalez J, Parra CM (2002) Acute toxicity and bioaccumulation of pesticide diazinon in red tilapia (Oreochromis niloticus x Mossambicus albina). Environ Toxicol 17:334–340.Google Scholar
  161. Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420.Google Scholar
  162. Patra RW, Chapman JC, Lim RP, Gehrke PC (2007) The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem 26:1454–1459.Google Scholar
  163. Phillips TA, Summerfelt RC, Wu J, Laird DA (2003) Toxicity of chlorpyrifos adsorbed on humic colloids to larval walleye (Stizostedion vitreum). Arch Environ Contam Toxicol 45:258–263.Google Scholar
  164. Phipps GL, Holcombe GW (1985) A method for aquatic multiple species toxicant testing – Acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ Pollut A 38:141–157.Google Scholar
  165. Post G, Schroeder T (1971) The toxicity of four insecticides to four Salmonid species. Bull Environ Contam Toxicol 6:144–155.Google Scholar
  166. Pusey BJ, Arthington AH, McLean J (1994) Effects of a pulsed application of chlorpyrifos on macroinvertebrate communities in an outdoor artificial stream system. Ecotox Environ Safe 27:221–250.Google Scholar
  167. Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1–150.Google Scholar
  168. Raimondo S, Vivian DN, Barron MG (2010) Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual. Version 3.1. Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL. EPA/600/R-10/004.Google Scholar
  169. Rawash IA, Gaaboub IA, El-Gayar FM, El-Shazli AY (1975) Standard curves for nuvacron, malathion, sevin, DDT, kelthane tested against the mosquito Culex pipiens L. and the microcrustacean Daphnia magna Straus. Toxicology 4:133–144.Google Scholar
  170. Rawn GP, Webster GRB, Findlay GM (1978) Effect of pool bottom substrate on residues and bioactivity of chlorpyrifos, against larvae of Culex tarsalis (Diptera-Culicidae). Can Entomol 110:1269–1276.Google Scholar
  171. Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627.Google Scholar
  172. Rider CV, LeBlanc GA (2005) An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 87:520–528.Google Scholar
  173. Rigertink RH, Kenaga EE (1966) Synthesis and insecticidal activity of some O,O-dialkyl O-3,5,6-trihalo-2-pyridyl phosphate and phosphorothioates. J Agric Food Chem 14:304–307.Google Scholar
  174. Sabljic A, Gusten H, Verhaar H, Hermens J (1995) QSAR Modeling of soil sorption – Improvements and systematics of log KOC vs log KOW correlations. Chemosphere 31:4489–4514.Google Scholar
  175. Sánchez M, Ferrando MD, Sancho E, Andreu-Moliner E (1998) Evaluation of a Daphnia magna renewal life-cycle test method with diazinon. J Environ Sci Health B 33:785–797.Google Scholar
  176. Sánchez M, Ferrando MD, Sancho E, Andreu E (2000) Physiological perturbations in several generations of Daphnia magna Straus exposed to diazinon. Ecotox Environ Safe 46:87–94.Google Scholar
  177. Sancho E, Ferrando MD, Andreu E, and Gamon M (1993) Bioconcentration and excretion of diazinon by eel. Bull Environ Contam Toxicol 50:578–585.Google Scholar
  178. Sangster Research Laboratories (2004) LOGKOW. A databank of evaluated octanol-water partition coefficients (Log P). [cited 2010 September 28]. Available from: http://logkow.cisti.nrc.ca/logkow/.
  179. Scharf J, Wiesiollek R, Bächmann K (1992) Pesticides in the atmosphere. Fresnius J Anal Chem 342:813–816.Google Scholar
  180. Siefert R (1984) Effects of Dursban (chlorpyrifos) on non-target organisms in a natural pond undergoing mosquito control treatment. Unpublished report prepared by Environmental Research Laboratory- Duluth, Duluth, MN, submitted to the U.S. Environmental Protection Agency. EPA MRID 459401–096.Google Scholar
  181. Siepmann S, Finlayson B (2000) Water quality criteria for diazinon and chlorpyrifos. California Department of Fish and Game, Rancho Cordova, CA. Administrative report 00–3.Google Scholar
  182. Solomon HM, Weis JS (1979) Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion. Teratology 19:51–62.Google Scholar
  183. Spieszalski WW, Niemczyk HD, Shetlar DJ (1994) Sorption of chlorpyrifos and fonofos on 4 soils and turfgrass thatch using membrane filters. J Environ Sci Heal B 29:1117–1136.Google Scholar
  184. Steinberg CEW, Xu Y, Lee SK, Freitag D, Kettrup A (1993) Effect of dissolved humic material (DHM) on bioavailability of some organic xenobiotics to Daphnia magna. Chem Spec Bioavailab 5:1–9.Google Scholar
  185. Surprenant DC (1988) The chronic toxicity of 14C-diazinon technical to Daphnia magna under flow-through conditions, EPA guidelines No. 72-4. Unpublished study prepared by Springborn Life Sciences, Inc., Wareham, MA, submitted to the U.S. Environmental Protection Agency. EPA MRID 40782302.Google Scholar
  186. Sved D, Drottar KR, Swigert J, Smith GJ (1993) Chlorpyrifos: A flow-through life-cycle toxicity test with the saltwater mysid (Mysidopsis bahia): Final report. Lab project number: 103A-103 C. Dow contract study ID: ES-DR-0043-4946, ES-2506. 57 p. Unpublished study prepared by Wildlife International Ltd., Easton, MD, submitted to the U.S. Environmental Protection Agency. EPA MRID 42664901.Google Scholar
  187. Teeter D (1988) Malathion (AC 6, 601): Hydrolysis. Malathion registration standard. American Cyanamid Company, Princeton, NJ, 1–64. EPA MRID 40941201.Google Scholar
  188. TenBrook PL, Palumbo AJ, Fojut TL, Hann P, Karkoski J, Tjeerdema RS (2010) The University of California-Davis Methodology for deriving aquatic life pesticide water quality criteria. Rev Environ Contam Toxicol 209:1–155.Google Scholar
  189. TenBrook PL, Tjeerdema RS, Hann P, Karkoski J (2009) Methods for deriving pesticide aquatic life criteria. Rev Environ Contam Toxicol 199:19–109.Google Scholar
  190. Tietze NS, Hester PG, Hallmon CF, Olson MA, Shaffer KR (1991) Acute toxicity of mosquitocidal compounds to young mosquitofish, Gambusia affinis. J Am Mosq Cont Assoc 7:290–293.Google Scholar
  191. Tomlin CDS (ed) 2003. The Pesticide Manual, A World Compendium, 13th edition. British Crop Protection Council, Alton, Hampshire, UK.Google Scholar
  192. Tondreau R (1987) Malathion (AC 6,601): The determination of water solubility. Malathion registration standard. American Cyanamid Company, Princeton, NJ.Google Scholar
  193. Tsuda T, Aoki S, Inoue T, Kojima M (1995) Accumulation and excretion of diazinon, fenthion and fenitrothion by killifish - Comparison of individual and mixed pesticides. Water Res 29:455–458.Google Scholar
  194. Tsuda T, Aoki S, Kojima M, Harada H (1989) Bioconcentration and excretion of diazinon, IBP, malathion and fenitrothion by willow shiner. Toxicol Environ Chem 24:185–190.Google Scholar
  195. Tsuda T, Aoki S, Kojima M, Harada H (1990) Bioconcentration and excretion of diazinon, IBP, malathion and fenitrothion by carp. Comp Biochem Physiol C 96:23–26.Google Scholar
  196. Tsuda T, Kojima M, Harada H, Nakajima A, Aoki S (1997) Relationships of bioconcentration factors of organophosphate pesticides among species of fish. Comp Biochem Physiol C 116:213–218.Google Scholar
  197. UKTAG (2008) Proposals for Environmental Quality Standards for Annex VIII Substances. UK Technical Advisory Group on the Water Framework Directive. Available at: http://www.wfduk.org/stakeholder_reviews/stakeholder_review_1-2007/LibraryPublicDocs/final_specific_pollutants.
  198. USEPA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. U.S. Environmental Protection Agency, Springfield, VA. PB-85-227049.Google Scholar
  199. USEPA (1986a) Ambient water quality criteria for chlorpyrifos. U.S. Environmental Protection Agency, Washington, DC. EPA 440/5-86-005.Google Scholar
  200. USEPA (1986b) Quality criteria for water. U.S. Environmental Protection Agency, Washington, DC. EPA 440/5-86-001.Google Scholar
  201. USEPA (2002) Interim reregistration eligibility decision for chlorpyrifos. U.S. Environmental Protection Agency, Washington, DC. EPA 738-R-01-007.Google Scholar
  202. USEPA (2004a) Interim reregistration eligibility decision, diazinon. U.S. Environmental Protection Agency, Washington, DC. EPA 738-R-04-006.Google Scholar
  203. USEPA (2004b) The incidence and severity of sediment contamination in surface waters of the United States: National sediment quality survey, 2nd edition. U.S. Environmental Protection Agency, Washington, DC. EPA-823-R-04-007. Available from: http://water.epa.gov/scitech/swguidance/waterquality/cs/pubs/upload/2004_12_09_cs_report_2004_nsqs2ed-complete.pdf.
  204. USEPA (2005) Aquatic Life Ambient Water Quality Criteria. Diazinon. U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-05-006.Google Scholar
  205. USEPA (2009a) Sediment Quality Guidelines website. [cited 2010 October 1]. U.S. Environmental Protection Agency. Available from: http://water.epa.gov/scitech/swguidance/waterquality/cs/library_guidelines.cfm
  206. USEPA (2009b) National Ambient Air Quality Standards website. [cited 2010 October 1]. U.S. Environmental Protection Agency. Available from: http://www.epa.gov/air/criteria.html.
  207. USFDA (2000) Industry activities staff booklet. U.S. Food and Drug Administration, Washington, DC. Available from: http://www.cfsan.fda.gov/~lrd/fdaact.html.
  208. USFWS (2010) Species Reports. Endangered Species Program. U.S. Fish and Wildlife Service. Available from: http://www.fws.gov/endangered/; http://ecos.fws.gov/tess_public/pub/listedAnimals.jsp; http://ecos.fws.gov/tess_public/pub/listedPlants.jsp.
  209. Van Breukelen SWF, Brock TCM (1993) Response of a macroinvertebrate community to insecticide application in replicated freshwater microcosms with emphasis on the use of principal component analysis. Sci Total Environ Supplement: 1047–1058.Google Scholar
  210. Van Den Brink PJ, Van Donk E, Gylstra R, Crum SJH, Brock TCM (1995) Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31:3181–3200.Google Scholar
  211. Van Den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban(R) 4E (active ingredient chlorpyrifos) in outdoor experimental ditches. 2. Invertebrate community responses and recovery. Environ Toxicol Chem 15:1143–1153.Google Scholar
  212. Van Der Geest HG, Greve GD, Boivin M-E, Kraak MHS, Gestel CAM (2000) Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environ Toxicol Chem 19:2900–2905.Google Scholar
  213. Van Der Hoeven N, Gerritsen AAM (1997) Effects of chlorpyrifos on individuals and populations of Daphnia pulex in the laboratory and field. Environ Toxicol Chem 16:2438–2447.Google Scholar
  214. Van Donk E, Prins H, Voogd HM, Crum SJH, Brock TCM (1995) Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. 1. Responses of plankton and zooplanktivorous insects. Arch Hydrobiol 133:417–439.Google Scholar
  215. Van Wijngaarden R, Leeuwangh P, Lucassen WGH, Romijn K, Ronday R, Vandervelde R, Willigenburg W (1993) Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bull Environ Contam Toxicol 51:716–723.Google Scholar
  216. Van Wijngaarden RPA (1993) Comparison of response of the mayfly Cloeon dipterum to chlorpyrifos in a single species toxicity test, laboratory microcosms, outdoor ponds and experimental ditches. Sci Total Environ Supplement: 1037–1046.Google Scholar
  217. Van Wijngaarden RPA, Brock TCM, Douglas MT (2005) Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds. Pest Manag Sci 61:923–935.Google Scholar
  218. Van Wijngaarden RPA, Leeuwangh V (1989) Relation between toxicity in laboratory and pond: an ecotoxicological study with chlorpyrifos. In: Proceedings of the International Symposium on Crop Protection (Mededelingen van de Faculteit Landbouwwetenschappen) volume 54(3b); 1989; Rijksuniversiteit Gent, Ghent, Belgium. p 1061–1069.Google Scholar
  219. Van Wijngaarden RPA, Van Den Brink PJ, Crum SJH, Voshaar JHO, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban(R) 4E (active ingredient chlorpyrifos) in outdoor experimental ditches. 1. Comparison of short-term toxicity between the laboratory and the field. Environ Toxicol Chem 15:1133–1142.Google Scholar
  220. Varó I, Serrano R, Pitarch E, Amat F, Lopez FJ, Navarro JC (2002) Bioaccumulation of chlorpyrifos through an experimental food chain: Study of protein HSP70 as biomarker of sublethal stress in fish. Arch Environ Contam Toxicol 42:229–235.Google Scholar
  221. Venturino A, Gauna LE, Bergoc RM, Dedangelo AMP (1992) Effect of exogenously applied polyamines on malathion toxicity in the toad Bufo arenarum hensel. Arch Environ Contam Toxicol 22:135–139.Google Scholar
  222. Verschueren K (1996) Handbook of environmental data on organic chemicals. Van Nostrand Reinhold, New York.Google Scholar
  223. Ward S, Arthington AH, Pusey BJ (1995) The effects of a chronic application of chlorpyrifos on the macroinvertebrate fauna in an outdoor artificial stream system – species responses. Ecotox Environ Safe 30:2–23.Google Scholar
  224. Werner I, Deanovic LA, Connor V, de Vlaming V, Bailey HC, Hinton DE (2000) Insecticide-caused toxicity to Ceriodaphnia dubia (Cladocera) in the Sacramento-San Joaquin River Delta, California, USA. Environ Toxicol Chem 19:215–227.Google Scholar
  225. Wheelock CE, Eder KJ, Werner I, Huang HZ, Jones PD, Brammell BF, Elskus AA, Hammock BD (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawyacha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192.Google Scholar
  226. Wolfe NL, Zepp RG, Gordon JA, Baughman GL, Cline DM (1977) Kinetics of chemical degradation of malathion in water. Environ Sci Technol 11:88–93.Google Scholar
  227. Worthing CR (ed) (1991) The Pesticide Manual, 9th Edition, A World Compendium. The British Crop Protection Council, Surrey, UK.Google Scholar
  228. Wu L, Green RL, Liu G, Yates MV, Pacheco P, Gan J, Yates SR (2002) Partitioning and persistence of trichlorfon and chlorpyrifos in a creeping bentgrass putting green. J Environ Qual 31:889–895.Google Scholar
  229. Zabik JM, Seiber JN (1993) Atmospheric transport of organophosphate pesticides from California’s Central Valley to the Sierra Nevada mountains. J Environ Qual 22:80–90.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Amanda J. Palumbo
    • 1
  • Patti L. TenBrook
    • 1
    • 2
  • Tessa L. Fojut
    • 1
    Email author
  • Isabel R. Faria
    • 1
  • Ronald S. Tjeerdema
    • 1
  1. 1.Department of Environmental Toxicology, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisUSA
  2. 2.USEPA Region 9San FranciscoUSA

Personalised recommendations