Skip to main content

B Lymphocyte-Derived Humoral Immune Defenses in Breast Milk Transmission of the HIV-1

  • Chapter
  • First Online:
Human Immunodeficiency Virus type 1 (HIV-1) and Breastfeeding

Abstract

The UNAIDS estimated that more than 370,000 (230,000–510,000) children were infected by human immunodeficiency virus (HIV) type 1 through mother-to-child transmission (MTCT) worldwide in 2009, with the majority (>90%) occurring in sub-Saharan Africa (a drop of 24% from 5 years earlier) [1]. The majority of MTCT occurs during pregnancy and birth. In addition, postnatal transmission of HIV from HIV-infected mother to her child through prolonged breastfeeding is well recognized, and may account for one-third to half of new infant HIV infections worldwide [2–10]. While studies of maternal or infant antiretroviral prophylaxis during the period of breastfeeding have shown substantial potential for reduction of infant HIV infections [11–14], postnatal virus transmissions may continue to occur even in the setting of optimal antiretroviral prophylaxis. Therefore, development of immunologic strategies to reduce HIV transmission via breast milk remains important to improving survival of infants born to HIV-infected mothers in the developing world.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNAIDS (2010) Report on the global AIDS epidemic. http://www.unaids.org/globalreport/Global_report.htm

  2. Van De Perre P, Simonon A, Hitimara DG et al (1993) Infective and anti-infective properties of breastmilk from HIV-infected women. Lancet 341:914–918

    Article  PubMed  Google Scholar 

  3. Datta P, Embree JE, Kreiss JK et al (1994) Mother-to-child transmission of human immunodeficiency virus type 1: report from the Nairobi Study. J Infect Dis 170:1134–1140

    Article  PubMed  CAS  Google Scholar 

  4. Bulterys M, Chao A, Dushimimana A, Saah A (1995) HIV-1 seroconversion after 20 months of age in a cohort of breastfed children born to HIV-1-infected women in Rwanda. AIDS 9:93–94

    PubMed  CAS  Google Scholar 

  5. Bertolli J, St Louis ME, Simonds RJ et al (1996) Estimating the timing of mother-to-child transmission of human immunodeficiency virus in a breast-feeding population in Kinshasa, Zaire. J Infect Dis 174:722–726

    Article  PubMed  CAS  Google Scholar 

  6. Bobat R, Moodley D, Coutsoudis A, Coovadia H (1997) Breastfeeding by HIV-1-infected women and outcome in their infants: a cohort study from Durban, South Africa. AIDS 11:1627–1633

    Article  PubMed  CAS  Google Scholar 

  7. Ekpini ER, Wiktor SZ, Satten GA et al (1997) Late postnatal mother-to-child transmission of HIV-1 in Abidjan, Côte d’Ivoire. Lancet 349:1054–1059

    Article  PubMed  CAS  Google Scholar 

  8. Miotti PG, Taha TE, Kumwenda NI et al (1999) HIV transmission through breastfeeding: a study in Malawi. J Am Med Assoc 282:744–749

    Article  CAS  Google Scholar 

  9. Fowler MG, Newell ML (2002) Breast-feeding and HIV-1 transmission in resource-limited settings. J Acquir Immune Defic Syndr 30:230–239

    PubMed  Google Scholar 

  10. John-Stewart G, Mbori-Ngacha D, Ekpini R et al (2004) Breast-feeding and transmission of HIV-1. J Acquir Immune Defic Syndr 35:196–202

    Article  PubMed  Google Scholar 

  11. Thior I, Lockman S, Smeaton LM et al (2006) Breastfeeding plus infant zidovudine prophylaxis for 6 months vs formula feeding plus infant zidovudine for 1 month to reduce mother-to-child HIV transmission in Botswana: a randomized trial: the Mashi Study. JAMA 296:794–805

    Article  PubMed  CAS  Google Scholar 

  12. Kumwenda NI, Hoover DR, Mofenson LM et al (2008) Extended antiretroviral prophylaxis to reduce breast-milk HIV-1 transmission. N Engl J Med 359:119–129

    Article  PubMed  CAS  Google Scholar 

  13. Chasela CS, Hudgens MG, Jamieson DJ et al (2010) Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N Engl J Med 362:2271–2281

    Article  PubMed  CAS  Google Scholar 

  14. Shapiro RL, Hughes MD, Ogwu A et al (2010) Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med 362:2282–2294

    Article  PubMed  CAS  Google Scholar 

  15. Coovadia HM, Rollins NC, Bland RM et al (2007) Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 369:1107–1116

    Article  PubMed  Google Scholar 

  16. Kourtis AP, Butera S, Ibegbu C, Belec L, Duerr A (2003) Breast milk and HIV-1: vector of transmission or vehicle of protection? Lancet Infect Dis 3:786–793

    Article  PubMed  Google Scholar 

  17. Fouda GG, Yates NL, Pollara J et al (2011) HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J Virol 85:9555–9567

    Article  PubMed  CAS  Google Scholar 

  18. Wilks AB, Perry JR, Ehlinger EP et al (2011) High cell-free virus load and robust autologous humoral immune responses in breast milk of simian immunodeficiency virus-infected African Green monkeys. J Virol 85:9517–9526

    Article  PubMed  CAS  Google Scholar 

  19. Hanson LA, Korotkova M, Lundin S et al (2003) The transfer of immunity from mother to child. Ann N Y Acad Sci 987:199–206

    Article  PubMed  CAS  Google Scholar 

  20. Leroy V, Newell ML, Dabis F et al (1998) International multicentre pooled analysis of late postnatal mother to child transmission of HIV-1 infection. Lancet 352:597–600

    Article  PubMed  CAS  Google Scholar 

  21. Becquet R, Bland R, Leroy V et al (2009) Duration, pattern of breastfeeding and postnatal transmission of HIV: pooled analysis of individual data from West and South African cohorts. PLoS One 4:e7397

    Article  PubMed  CAS  Google Scholar 

  22. Gaillard P, Fowler MG, Dabis F et al (2004) Use of antiretroviral drugs to prevent HIV-1 transmission through breast-feeding: from animal studies to randomized clinical trials. J Acquir Immune Defic Syndr 35:178–187

    Article  PubMed  Google Scholar 

  23. The Breastfeeding and HIV International Transmission Study Group (2004) Late postnatal transmission of HIV-1 in breast-fed children: an individual patient data meta-analysis. J Infect Dis 189:2154–2166

    Article  Google Scholar 

  24. Iliff PJ, Piwoz EG, Tavengwa NV et al (2005) Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIVfree survival. AIDS 19:699–708

    Article  PubMed  Google Scholar 

  25. Rollins NC, Becquet R, Bland RM, Coutsoudis A, Coovadia HM, Newell ML (2008) Infant feeding, HIV transmission and mortality at 18 months: the need for appropriate choices by mothers and prioritization within programmes. AIDS 22:2349–2357

    Article  PubMed  Google Scholar 

  26. Richardson BA, John-Stewart GC, Hughes JP et al (2003) Breast-milk infectivity in human immunodeficiency virus type 1-infected mothers. J Infect Dis 187:736–740

    Article  PubMed  Google Scholar 

  27. Willumsen JF, Newell ML, Filteau SM et al (2001) Variation in breastmilk HIV-1 viral load in left and right breasts during the first 3 months of lactation. AIDS 15:1896–1898

    Article  PubMed  CAS  Google Scholar 

  28. Neveu D, Viljoen J, Bland RM et al (2011) Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis 52:819–825

    Article  PubMed  CAS  Google Scholar 

  29. Lewis P, Nduati R, Kreiss JK et al (1998) Cell free HIV-1 in breast milk. J Infect Dis 177:34–39

    Article  PubMed  CAS  Google Scholar 

  30. Van De Perre P (1995) Postnatal transmission of the human immunodeficiency virus type 1 and the breast feeding dilemma. Am J Obstet Gynecol 173:483–487

    Article  PubMed  Google Scholar 

  31. Van De Perre P, Cartoux M (1996) Retroviral infection and breast-feeding. J Clin Microbiol Infect 1:6–12

    Article  Google Scholar 

  32. Tranchat C, Van de Perre P, Simonon-Sorel A et al (1999) Maternal humoral factors associated with perinatal HIV-1 transmission in a cohort from Kigali, Rwanda, 1988–94. J Infect 39:213–220

    Article  PubMed  CAS  Google Scholar 

  33. Van De Perre P (1999) Mother to child transmission of HIV-1: the all mucosal hypothesis as a predominant mechanism of transmission. AIDS 13:1133–1138

    Article  PubMed  Google Scholar 

  34. Van De Perre P (1999) Transmission of human immunodeficiency virus type 1 through breast-feeding: how can it be prevented? J Infect Dis 179:S405–S407

    Article  PubMed  Google Scholar 

  35. Van De Perre P (2000) Breast milk transmission of HIV-1. Laboratory and clinical studies. Ann N Y Acad Sci 918:122–127

    Article  PubMed  Google Scholar 

  36. Page-Shafer K, Sweet S, Kassaye S, Ssali C (2006) Saliva, breast milk, and mucosal fluids in HIV transmission. Adv Dent Res 19:152–157

    Article  PubMed  CAS  Google Scholar 

  37. Becquart P, Hocini H, Levy M, Sepou A, Kazatchkine MD, Belec L (2000) Secretory anti-human immunodeficiency virus (HIV) antibodies in colostrum and breast milk are not a major determinant of the protection of early postnatal transmission of HIV. J Infect Dis 181:532–539

    Article  PubMed  CAS  Google Scholar 

  38. Nduati RW, John GC, Richardson BA et al (1995) HIV-1 infected cells in breast milk: association with immunosuppression and vitamin A deficiency. J Infect Dis 172:1461–1468

    Article  PubMed  CAS  Google Scholar 

  39. Semba RD, Kumwenda N, Taha TE et al (1999) Mastitis and immunological factors in breast milk of human immunodeficiency virus-infected women. J Hum Lact 15:301–306

    Article  PubMed  CAS  Google Scholar 

  40. Willumsen J, Filteau SM, Coutsoudis A et al (2003) Breastmilk RNA viral load in HIV-1 infected South African women: effects of subclinical mastitis and infant feeding. AIDS 17:407–414

    Article  PubMed  Google Scholar 

  41. Becquart P, Foulongne V, Willumsen J, Rouzioux C, Segondy M, Van de Perre P (2006) Quantitation of HIV-1 RNA in breast milk by real time PCR. J Virol Methods 133:109–111

    Article  PubMed  CAS  Google Scholar 

  42. Becquart P, Chomont N, Roques P et al (2002) Compartmentalization of HIV-1 between breast milk and blood of HIV-infected mothers. Virology 300:109–117

    Article  PubMed  CAS  Google Scholar 

  43. Rousseau CM, Nduati RW, Richardson BA et al (2004) Association of levels of HIV-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis 190:1880–1888

    Article  PubMed  Google Scholar 

  44. Koulinska IN, Villamor E, Chaplin B et al (2006) Transmission of cell-free and cell-associated HIV-1 through breast-feeding. J Acquir Immune Defic Syndr 41:93–99

    Article  PubMed  Google Scholar 

  45. Petitjean G, Becquart P, Tuaillon E et al (2007) Isolation and characterization of HIV-1-infected resting CD4+ T lymphocytes in breast milk. J Clin Virol 39:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Lunney KM, Iliff P, Mutasa K et al (2010) Associations between breast milk viral load, mastitis, exclusive breast-feeding, and postnatal transmission of HIV. Clin Infect Dis 50:762–769

    PubMed  Google Scholar 

  47. Valea D, Tuaillon E, Al Tabaa Y et al (2011) CD4+ T cells spontaneously producing human immunodeficiency virus type I in breast milk from women with or without antiretroviral drugs. Retrovirology 8:34

    Article  PubMed  CAS  Google Scholar 

  48. Becquart P, Petitjean G, Tabaa YA et al (2006) Detection of a large T-cell reservoir able to replicate HIV-1 actively in breast milk. AIDS 20:1453–145

    Article  PubMed  Google Scholar 

  49. Pillay K, Coutsoudis A, York D, Kuhn L, Coovadia HM (2000) Cell-free virus in breast milk of HIV-1-seropositive women. J Acquir Immune Defic Syndr 24:330–336

    PubMed  CAS  Google Scholar 

  50. Richardson BA, John-Stewart GC, Hughes J et al (2003) Breast milk infectivity in HIV-1-infected mothers. J Infect Dis 187:736–740

    Article  PubMed  Google Scholar 

  51. Rousseau CM, Nduati RW, Richardson BA et al (2003) Longitudinal analysis of human immunodeficiency virus type 1 RNA in breast milk and of its relationship to infant infection and maternal disease. J Infect Dis 187:741–747

    Article  PubMed  Google Scholar 

  52. Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67:2182–90

    PubMed  CAS  Google Scholar 

  53. Semba RD, Neville MC (1999) Breast-feeding, mastitis, and HIV transmission: nutritional implications. Nutr Rev 57:146–153

    Article  PubMed  CAS  Google Scholar 

  54. Embree JE, Njenga S, Datta P et al (2000) Risk factors for postnatal mother-child transmission of HIV-1. AIDS 14:2535–2541

    Article  PubMed  CAS  Google Scholar 

  55. Fawzi W, Msamanga G, Spiegelman D et al (2002) Transmission of HIV-1 through breastfeeding among women in Dar es Salaam, Tanzania. J Acquir Immune Defic Syndr 31:331–338

    Article  PubMed  Google Scholar 

  56. Farquhar C, VanCott T, Bosire R et al (2008) Salivary human immunodeficiency virus (HIV)-1-specific immunoglobulin A in HIV-1-exposed infants in Kenya. Clin Exp Immunol 153:37–43

    Article  PubMed  CAS  Google Scholar 

  57. Ogra SS, Weintraub D, Ogra PL (1977) Immunologic aspects of human colostrums and milk. III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the newborn. J Immunol 119:245–248

    PubMed  CAS  Google Scholar 

  58. Ogra SS, Ogra PL (1978) Immunologic aspects of human colostrums and milk. II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation. J Pediatr 92:550–555

    Article  PubMed  CAS  Google Scholar 

  59. Crago SS, Prince SJ, Pretlow TG et al (1979) Human colostral cells. I. Separation and characterization. Clin Exp Immunol 38:585–597

    PubMed  CAS  Google Scholar 

  60. Xanthou M (1997) Human milk cells. Acta Paediatr 86:890–891

    Article  Google Scholar 

  61. Bertotto A, Gerli R, Fabietti G et al (1990) Human breast milk T lymphocytes display the phenotype and functional characteristics of memory T cells. Eur J Immunol 20:1877–1880

    Article  PubMed  CAS  Google Scholar 

  62. Kourtis AP, Ibegbu CC, Theiler R et al (2007) Breast milk CD4+ T cells express high levels of C chemokine receptor 5 and CXC chemokine receptor 4 and are preserved in HIV-infected mothers receiving highly active antiretroviral therapy. J Infect Dis 195:965–972

    Article  PubMed  CAS  Google Scholar 

  63. Bertotto A, Castellucci G, Radicioni M, Bartolucci M, Vaccaro R (1996) CD40 ligand expression on the surface of colostral T cells. Arch Dis Child Fetal Neonatal 74:F135–F136

    Article  CAS  Google Scholar 

  64. Davis MK (1991) Human milk and HIV infection: Epidemiologic and laboratory data. In: Mestecky J (ed) Immunology of milk and neonates. Plenum Press, NewYork, pp 271–280

    Chapter  Google Scholar 

  65. Tuaillon E, Valea D, Becquart P et al (2009) Human Milk-derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol 182:7155–7162

    Article  PubMed  CAS  Google Scholar 

  66. Bush JF, Beer AE (1979) Analysis of complement receptors on B-lymphocytes in human milk. Am J Obstet Gynecol 133:708–712

    PubMed  CAS  Google Scholar 

  67. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  PubMed  CAS  Google Scholar 

  68. Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME (1977) Origin of IgA secreting plasma cells in the mammary gland. J Exp Med 146:1311–1322

    Article  PubMed  CAS  Google Scholar 

  69. Brandtzaeg P (2003) Mucosal immunity: integration between mother and the breast-fed infant. Vaccine 24:3382–3388

    Article  CAS  Google Scholar 

  70. Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3:822–829

    Article  PubMed  CAS  Google Scholar 

  71. Williams MB, Rosé JR, Rott LS, Franco MA, Greenberg HB, Butcher EC (1998) The memory B cell subset responsible for the secretory IgA response and protective humoral immunity to rotavirus expresses the intestinal homing receptor, α4β7. J Immunol 161:4227–4235

    PubMed  CAS  Google Scholar 

  72. Goldman SS (1993) The immune system of the human milk. Antimicrobial, anti-inflammatory and immunomodulating properties. Pediatr J Infect Dis 12:664–671

    Article  CAS  Google Scholar 

  73. Lawrence RM, Lawrence RA (2004) Breast milk and infection. Clin Perinatol 31:501–528

    Article  PubMed  Google Scholar 

  74. Goldman AS, Garza C, Nichols BL, Goldblum RM (1982) Immunologic factors in human milk during the first year of lactation. J Pediatr 100:563–567

    Article  PubMed  CAS  Google Scholar 

  75. Vassilev TL, Veleva KV (1996) Natural polyreactive IgA and IgM autoantibodies in human colostrum. Scand J Immunol 44:535–539

    Article  PubMed  CAS  Google Scholar 

  76. Bouhlal H, Latry V, Requena M et al (2005) Natural antibodies to CCR5 from breast milk block infection of macrophages and dendritic cells with primary R5-tropic HIV-1. J Immunol 174:7202–7209

    PubMed  CAS  Google Scholar 

  77. Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25:174–179

    Article  PubMed  CAS  Google Scholar 

  78. Duan B, Morel L (2006) Role of B-1a cells in autoimmunity. Autoimmun Rev 5:403–408

    Article  PubMed  CAS  Google Scholar 

  79. Avrameas S, Dighiero G, Lymberi P, Guilbert B (1983) Studies on natural antibodies and autoantibodies. Ann Immunol (Paris) 134D:103–113

    CAS  Google Scholar 

  80. Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362

    Article  PubMed  CAS  Google Scholar 

  81. Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10:778–786

    Article  PubMed  CAS  Google Scholar 

  82. Ochsenbein AF, Fehr T, Lutz C et al (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159

    Article  PubMed  CAS  Google Scholar 

  83. Zhou ZH, Zhang Y, Hu YF et al (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1:51–61

    Article  PubMed  CAS  Google Scholar 

  84. Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP (1997) Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 65:3997–4004

    PubMed  CAS  Google Scholar 

  85. Requena M, Bouhlal H, Nasreddine N et al (2008) Inhibition of HIV-1 transmission in trans from dendritic cells to CD4+ T lymphocytes by natural antibodies to the CRD domain of DC-SIGN purified from breast milk and intravenous immunoglobulins. Immunology 123:508–518

    Article  PubMed  CAS  Google Scholar 

  86. Naarding MA, Dirac AM, Ludwig IS et al (2006) Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrob Agents Chemother 50:3367–3374

    Article  PubMed  CAS  Google Scholar 

  87. Stax MJ, Naarding MA, Tanck MW et al (2011) Binding of human milk to pathogen receptor DC-SIGN varies with bile salt-stimulated lipase (BSSL) gene polymorphism. PLoS One 6:e17316

    Article  PubMed  CAS  Google Scholar 

  88. Lehner T, Bergmeier L, Wang Y, Tao L, Mitchell EA (1999) A rational basis for mucosal vaccination against HIV infection. Immunol Rev 170:183–196

    Article  PubMed  CAS  Google Scholar 

  89. Eslahpazir J, Jenabian MA, Bouhlal B et al (2008) Infection of macrophages and dendritic cells with primary R5-tropic human immunodeficiency virus type 1 inhibited by natural polyreactive anti-CCR5 antibodies purified from cervicovaginal secretions. Clin Vaccine Immunol 15:872–884

    Article  PubMed  CAS  Google Scholar 

  90. Mouquet H, Scheid JF, Zoller MJ et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595

    Article  PubMed  CAS  Google Scholar 

  91. Dimitrov JD, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S (2011) “Rational vaccine design” for HIV should take into account the adaptive potential of polyreactive antibodies. PLoS Pathog 7:e1002095

    Article  PubMed  CAS  Google Scholar 

  92. Van de Perre P, Hitimana DG, Lepage P (1988) Human immunodeficiency virus antibodies of IgG, IgA, and IgM subclasses in milk of seropositive mothers. J Pediatr 113:1039–1041

    Article  PubMed  Google Scholar 

  93. Belec L, Bouquety JC, Georges A et al (1990) Antibodies to HIV-1 in the breast milk of healthy, seropositive women. Pediatrics 85:1022–1026

    PubMed  CAS  Google Scholar 

  94. Van De Perre P, Simonon A, Hitimana DG et al (1993) Infective and anti-infective properties of breastmilk from HIV-1-infected women. Lancet 341:914–918

    Article  PubMed  Google Scholar 

  95. Becquart P, Hocini H, Garin B et al (1999) Compartmentalization of the IgG immune response to HIV-1 in breast milk. AIDS 13:1323–1331

    Article  PubMed  CAS  Google Scholar 

  96. Lü FX (2000) Predominate HIV1-specific IgG activity in various mucosal compartments of HIV1-infected individuals. Clin Immunol 97:59–68

    Article  PubMed  Google Scholar 

  97. Kuhn L, Trabattoni D, Kankasa C et al (2006) HIV-specific secretory IgA in breast milk of HIV-positive mothers is not associated with protection against HIV transmission among breast-fed infants. J Pediatr 149:611–616

    Article  PubMed  CAS  Google Scholar 

  98. Duprat C, Mohammed Z, Datta P et al (1994) HIV-1 IgA antibody in breast milk and serum. Pediatr Infect Dis J 13:603–608

    Article  PubMed  CAS  Google Scholar 

  99. Hanson LA, Ahlstedt S, Andersson B et al (1984) The immune response of the mammary gland and its significance for the neonate. Ann Allergy 53:576–582

    PubMed  CAS  Google Scholar 

  100. Belec L, Georges AJ, Steenman G, Martin PM (1989) Antibodies to HIV in vaginal secretions of heterosexual women. J Infect Dis 160:385–391

    Article  PubMed  CAS  Google Scholar 

  101. Wolff H, Mayer K, Seage G, Politch J, Horsburgh CR, Anderson D (1992) A comparison of HIV-1 antibody classes, titers, and specificities in paired semen and blood samples from HIV-1 seropositive men. J Acquir Immune Defic Syndr 5:65–69

    PubMed  CAS  Google Scholar 

  102. Belec L, Dupre T, Prazuck T et al (1995) Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection. J Infect Dis 172:691–697

    Article  PubMed  CAS  Google Scholar 

  103. Artenstein AW, VanCott TC, Sitz KV et al (1997) Mucosal immune responses in four distinct compartments of women infected with human immunodeficiency virus type 1: a comparison by site and correlation with clinical information. J Infect Dis 175:265–271

    Article  PubMed  CAS  Google Scholar 

  104. Haimovici F, Mayer KH, Anderson DJ (1997) Quantitation of HIV-1-specific IgG, IgA, and IgM antibodies in human genital tract secretions. J Acquir Immune Defic Syndr Hum Retrovirol 15:185–191

    Article  PubMed  CAS  Google Scholar 

  105. Raux M, Finkielsztejn L, Salmon-Ceron D et al (1999) Development and standardization of methods to evaluate the antibody response to an HIV-1 candidate vaccine in secretions and sera of seronegative vaccine recipients. J Immunol Methods 222:111–124

    Article  PubMed  CAS  Google Scholar 

  106. Lu FX (2000) Predominate HIV-1-specific IgG activity in various mucosal compartments of HIV-1-infected individuals. Clin Immunol 97:59–68

    Article  PubMed  CAS  Google Scholar 

  107. Wright PF, Kozlowski PA, Rybczyk GK et al (2002) Detection of mucosal antibodies in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 18:1291–1300

    Article  PubMed  CAS  Google Scholar 

  108. Mestecky J, Jackson S, Moldoveanu Z et al (2004) Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 20:972–988

    Article  PubMed  CAS  Google Scholar 

  109. Alexander R, Mestecky J (2007) Neutralizing antibodies in mucosal secretions: IgG or IgA? Curr HIV Res 5:588–593

    Article  PubMed  CAS  Google Scholar 

  110. Kozlowski PA, Chen D, Eldridge JH, Jackson S (1994) Contrasting IgA and IgG neutralization capacities and responses to HIV type 1 gp120 V3 loop in HIV-infected individuals. AIDS Res Hum Retroviruses 10:813–822

    PubMed  CAS  Google Scholar 

  111. Israel ZR, Marx PA (1995) Nonclassical mucosal antibodies predominate in genital secretions of HIV-1 infected chimpanzees. J Med Primatol 24:53–60

    Article  PubMed  CAS  Google Scholar 

  112. Schafer F, Kewenig S, Stolte N et al (2002) Lack of simian immunodeficiency virus (SIV) specific IgA response in the intestine of SIV infected rhesus macaques. Gut 50:608–614

    Article  PubMed  CAS  Google Scholar 

  113. Permar SR, Wilks AB, Ehlinger EP et al (2010) Limited contribution of mucosal IgA to simian immunodeficiency virus (SIV)-specific neutralizing antibody response and virus envelope evolution in breast milk of SIV-infected, lactating rhesus monkeys. J Virol 84:8209–8218

    Article  PubMed  CAS  Google Scholar 

  114. Holmgren J, Svennerholm A-M (2005) Mucosal immunity to bacteria. In: Mestecky J, Bienenstock J, Lamm M, Mayer L, McGhee J, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 783–797

    Google Scholar 

  115. Murphy BR (2005) Mucosal immunity to viruses. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 799–813

    Google Scholar 

  116. Rahman MM, Yamauchi M, Hanada N, Nishikawa K, Morishima T (1987) Local production of rotavirus specific IgA in breast tissue and transfer to neonates. Arch Dis Child 62:401–405

    Article  PubMed  CAS  Google Scholar 

  117. Fishaut M, Murphy D, Neifert M, McIntosh K, Ogra PL (1981) Bronchomammary axis in the immune response to respiratory syncytial virus. J Pediatr 99:186–191

    Article  PubMed  CAS  Google Scholar 

  118. Nomura M, Imai M, Tsuda F et al (1985) Immunoglobulin A antibody against hepatitis B core antigen in the acute and persistent infection with hepatitis B virus. Gastroenterology 89:1109–1113

    PubMed  CAS  Google Scholar 

  119. Engelhard D, Weinberg M, Or R et al (1991) Immunoglobulins A, G, and M to cytomegalovirus during recurrent infection in recipients of allogeneic bone marrow transplantation. J Infect Dis 163:628–630

    Article  PubMed  CAS  Google Scholar 

  120. Fachiroh J, Schouten T, Hariwiyanto B et al (2004) Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: a comparison of Indonesian, Chinese, and European subjects. J Infect Dis 190:53–62

    Article  PubMed  CAS  Google Scholar 

  121. Moldoveanu Z, Clements ML, Prince SJ, Murphy BR, Mestecky J (1995) Human immune responses to influenza virus vaccine administered by systemic or mucosal routes. Vaccine 13:1006–1012

    Article  PubMed  CAS  Google Scholar 

  122. Eriksson K, Kilander A, Hagberg L, Norkrans G, Homgren J, Czerkinsky C (1995) Virus-specific antibody production and polyclonal B-cell activation in the intestinal mucosa of HIV-infected individuals. AIDS 9:695–700

    Article  PubMed  CAS  Google Scholar 

  123. Kotler DP, Scholes JV, Tierney AR (1987) Intestinal plasma cell alterations in acquired immunodeficiency syndrome. Dig Dis Sci 38:1119–1127

    Article  Google Scholar 

  124. Janoff EN, Jackson S, Wahl SM, Thomas K, Peterman JH, Smith PD (1994) Intestinal immunoglobulins during human immunodeficiency virus type 1 infection. J Infect Dis 170:299–307

    Article  PubMed  CAS  Google Scholar 

  125. Berberian L, Goodglick L, Kipps TJ, Braun J (1993) Immunoglobulin VH3 gene products: natural ligands for HIV gp120. Science 261:1588–1591

    Article  PubMed  CAS  Google Scholar 

  126. Xu W, Santini PA, Sullivan JS et al (2009) HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10:1008–1017

    Article  PubMed  CAS  Google Scholar 

  127. Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanisms of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196

    Article  PubMed  CAS  Google Scholar 

  128. Tomaras GD, Yates NL, Liu P et al (2008) Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol 82:12449–12463

    Article  PubMed  CAS  Google Scholar 

  129. Mestecky J, Wright PF, Lopalco L et al (2011) Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retroviruses 27:469–486

    PubMed  CAS  Google Scholar 

  130. Russell MW, Kilian M (2005) Biological activities of IgA. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 267–289

    Google Scholar 

  131. Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 3:42–47

    Article  PubMed  CAS  Google Scholar 

  132. Hocini H, Belec L, Iscaki S et al (1997) High-level ability of secretory IgA to block HIV type 1 transcytosis: contrasting secretory IgA and IgG responses to glycoprotein 160. AIDS Res Hum Retroviruses 13:1179–1185

    Article  PubMed  CAS  Google Scholar 

  133. Scarlatti G, Albert J, Rossi V et al (1993) Mother to child transmission of HIV-1: correlation with neutralizing antibodies against primary isolates. J Infect Dis 168:207–210

    Article  PubMed  CAS  Google Scholar 

  134. Barin F, Jourdain G, Brunet S et al (2006) Revisiting the role of neutralizing antibodies in mother-to-child transmission of HIV-1. J Infect Dis 193:1504–1511

    Article  PubMed  Google Scholar 

  135. Dickover R, Garratty E, Yusim K, Miller C, Korber B, Bryson Y (2006) Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J Virol 80:6525–6536

    Article  PubMed  CAS  Google Scholar 

  136. Rainwater SM, Wu X, Nduati R et al (2007) Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding. Curr HIV Res 5:189–197

    Article  PubMed  CAS  Google Scholar 

  137. Banks ND, Kinsey N, Clements J, Hildreth JE (2002) Sustained antibody-dependent cell-mediated cytotoxicity (ADCC) in SIV-infected macaques correlates with delayed progression to AIDS. AIDS Res Hum Retroviruses 18:1197–1205

    Article  PubMed  CAS  Google Scholar 

  138. Forthal DN, Landucci G, Keenan B (2001) Relationship between antibody-dependent cellular cytotoxicity, plasma HIV type 1 RNA, and CD4+ lymphocyte count. AIDS Res Hum Retroviruses 17:553–561

    Article  PubMed  CAS  Google Scholar 

  139. Nag P, Kim J, Sapiega V et al (2004) Women with cervicovaginal antibody-dependent cell-mediated cytotoxicity have lower genital HIV-1 RNA loads. J Infect Dis 190:1970–1978

    Article  PubMed  Google Scholar 

  140. Xiao P, Zhao J, Patterson LJ et al (2010) Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective efficacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 84:7161–7173

    Article  PubMed  CAS  Google Scholar 

  141. Van Rompay KK, Berardi CJ, Dillard-Telm S et al (1998) Passive immunization of newborn rhesus macaques prevents oral simian immunodeficiency virus infection. J Infect Dis 177:1247–1259

    Article  PubMed  Google Scholar 

  142. Baba TW, Liska V, Hofmann-Lehmann R et al (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–2006

    Article  PubMed  CAS  Google Scholar 

  143. Hofmann-Lehmann R, Rasmussen RA, Vlasak J et al (2001) Passive immunization against oral AIDS virus transmission: an approach to prevent mother-to-infant HIV-1 transmission? J Med Primatol 30:190–196

    Article  PubMed  CAS  Google Scholar 

  144. Ruprecht RM, Hofmann-Lehmann R, Smith-Franklin BA et al (2001) Protection of neonatal macaques against experimental SHIV infection by human neutralizing monoclonal antibodies. Transfus Clin Biol 8:350–358

    Article  PubMed  CAS  Google Scholar 

  145. Ruprecht RM, Ferrantelli F, Kitabwalla M et al (2003) Antibody protection: passive immunization of neonates against oral AIDS virus challenge. Vaccine 21:3370–3373

    Article  PubMed  CAS  Google Scholar 

  146. Ferrantelli F, Buckley KA, Rasmussen RA et al (2007) Time dependence of protective post-exposure prophylaxis with human monoclonal antibodies against pathogenic SHIV challenge in newborn macaques. Virology 358: 69–78

    Article  PubMed  CAS  Google Scholar 

  147. Amedee AM, Lacour N, Ratterree M (2003) Mother-to-infant transmission of SIV via breast-feeding in rhesus macaques. J Med Primatol 32:187–193

    Article  PubMed  CAS  Google Scholar 

  148. Permar SR, Kang HH, Carville A et al (2008) Potent simian immunodeficiency virus-specific cellular immune responses in the breast milk of simian immunodeficiency virus-infected, lactating rhesus monkeys. J Immunol 181:3643–3650

    PubMed  CAS  Google Scholar 

  149. Rychert J, Amedee AM (2005) The antibody response to SIV in lactating rhesus macaques. J Acquir Immune Defic Syndr 38:135–141

    Article  PubMed  CAS  Google Scholar 

  150. Otsyula MG, Gettie A, Suleman M, Tarara R, Mohamed I, Marx P (1995) Apparent lack of vertical transmission of simian immunodeficiency virus (SIV) in naturally infected African green monkeys, Cercopithecus aethiops. Ann Trop Med Parasitol 89:573–576

    PubMed  CAS  Google Scholar 

  151. Wilks AB, Christian EC, Seaman MS et al (2010) Robust vaccine-elicited cellular immune responses in breast milk following systemic simian immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating rhesus monkeys. J Immunol 185:7097–7106

    Article  PubMed  CAS  Google Scholar 

  152. Sun Y, Asmal M, Lane S et al (2011) Antibody-dependent cell-mediated cytotoxicity in simian immunodeficiency virus-infected rhesus monkeys. J Virol 85:6906–6912

    Article  PubMed  CAS  Google Scholar 

  153. Moore JS, Rahemtulla F, Kent LW et al (2003) Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro. Virology 313:343–353

    Article  PubMed  CAS  Google Scholar 

  154. Malamud D, Wahl SM (2010) The mouth: a gateway or a trap for HIV? AIDS 24:5–16

    Article  PubMed  Google Scholar 

  155. Baron S, Poast J, Cloyd MW (1999) Why is HIV rarely transmitted by oral secretions? Saliva can disrupt orally shed, infected leukocytes. Arch Intern Med 159:303–310

    Article  PubMed  CAS  Google Scholar 

  156. Baron S, Poast J, Richardson CJ et al (2000) Oral transmission of human immunodeficiency virus by infected seminal fluid and milk: a novel mechanism. J Infect Dis 181:498–504

    Article  PubMed  CAS  Google Scholar 

  157. Rothenberg R, Scarlett M, del Rio C, Reznik D, O’Daniels C (1998) Oral transmission of HIV. AIDS 12:2095–2105

    Article  PubMed  CAS  Google Scholar 

  158. Carthagena L, Becquart P, Hocini H, Kazatchkine MD, Bouhlal H, Belec L (2011) Modulation of HIV binding to epithelial cells and HIV transfer from immature dendritic cells to CD4 T lymphocytes by human lactoferrin and its major exposed LF-33 peptide. Open Virol J 5:27–34

    Article  PubMed  CAS  Google Scholar 

  159. McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 96:456–464

    Article  PubMed  CAS  Google Scholar 

  160. Shugars DC (1999) Endogenous mucosal antiviral factors of the oral cavity. J Infect Dis 179:S431–S435

    Article  PubMed  CAS  Google Scholar 

  161. Leigh JE, Steele C, Wormley FL Jr et al (1998) Th1/Th2 cytokine expression in saliva of HIV-positive and HIV-negative individuals: a pilot study in HIV-positive individuals with oropharyngeal candidiasis. J Acquir Immune Defic Syndr Hum Retrovirol 19:373–380

    Article  PubMed  CAS  Google Scholar 

  162. McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM (1997) Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90:1141–1149

    PubMed  CAS  Google Scholar 

  163. Meng G, Wei X, Wu X et al (2002) Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8:150–156

    Article  PubMed  CAS  Google Scholar 

  164. John-Stewart GC, Mbori-Ngacha D, Payne BL et al (2009) HIV-1-specific cytotoxic T lymphocytes and breast milk HIV-1 transmission. J Infect Dis 199:889–898

    Article  PubMed  CAS  Google Scholar 

  165. Chun TW, Carruth L, Finzi D et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    Article  PubMed  CAS  Google Scholar 

  166. Sacha JB, Chung C, Rakasz EG et al (2007) Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol 178:2746–2754

    PubMed  CAS  Google Scholar 

  167. Miller CJ, Marthas M, Torten J et al (1994) Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia. J Virol 68:6391–6400

    PubMed  CAS  Google Scholar 

  168. Farquhar C, Rowland-Jones S, Mbori-Ngacha D et al (2004) Human leukocyte antigen (HLA) B*18 and protection against mother-to-child HIV type 1 transmission. AIDS Res Hum Retroviruses 20:692–697

    Article  PubMed  CAS  Google Scholar 

  169. Farquhar C, John-Stewart G (2003) The role of infant immune responses and genetic factors in preventing HIV-1 acquisition and disease progression. Clin Exp Immunol 134:367–377

    Article  PubMed  CAS  Google Scholar 

  170. Wilson C (2005) Developmental immunology and role of host defenses in neonatal susceptibility. In: RemingtonJ KleinJ (ed) Infectious diseases of the fetus and newborn infant, 6th edn. WB Saunders Company, Philadelphia, PA, pp 37–49

    Google Scholar 

  171. Johnson DC, McFarland EJ, Muresan P et al (2005) Safety and immunogenicity of an HIV-1 recombinant canarypox vaccine in newborns and infants of HIV-1-infected women. J Infect Dis 192:2129–2133

    Article  PubMed  CAS  Google Scholar 

  172. Farquhar C, Van Cott T, Bosire R et al (2008) Salivary human immunodeficiency virus (HIV)-1-specific ­immunoglobulin A in HIV-1-exposed infants in Kenya. Clin Exp Immunol 153:37–43

    Article  PubMed  CAS  Google Scholar 

  173. Ebrahim GJ (1995) Breast milk immunology. J Trop Pediatr 4:2–4

    Article  Google Scholar 

  174. Michie CA, Tantscher E, Schall T, Rot A (1998) Physiological secretion of chemokines in human breast milk. Eur Cytokine Netw 9:123–129

    PubMed  CAS  Google Scholar 

  175. Jia HP, Starner T, Ackermann M et al (2001) Abundant human beta-defensin-1 expression in milk and mammary gland epithelium. J Pediatr 138:109–112

    Article  PubMed  CAS  Google Scholar 

  176. Tunzi CR, Harper PA, Bar-Oz B et al (2000) Beta-defensin expression in human mammary gland epithelia. Pediatr Res 48:30–35

    Article  PubMed  CAS  Google Scholar 

  177. Farquhar C, Van Cott TC, Mbori-Ngacha DA et al (2002) Salivary secretory leukocyte protease inhibitor is associated with reduced transmission of HIV-1 through breast milk. J Infect Dis 186:1173–1176

    Article  PubMed  CAS  Google Scholar 

  178. Farquhar C, Mbori-Ngacha DA, Redman MW et al (2005) CC and CXC chemokines in breastmilk are associated with mother-to-child HIV-1 transmission. Curr HIV Res 3:361–369

    Article  PubMed  CAS  Google Scholar 

  179. Saidi H, Eslahpazir J, Carbonneil C et al (2006) Differential modulation of human lactoferrin activity against both R5 and X4-HIV-1 adsorption on epithelial cells and dendritic cells by natural antibodies. J Immunol 177: 5540–5549

    PubMed  CAS  Google Scholar 

  180. Bosire R, Guthrie BL, Lohman-Payne B et al (2007) Longitudinal comparison of chemokines in breastmilk early postpartum among HIV-1-infected and uninfected Kenyan women. Breastfeed Med 2:129–138

    Article  PubMed  Google Scholar 

  181. Bosire R, John-Stewart GC, Mabuka JM et al (2007) Breast milk alpha-defensins are associated with HIV type 1 RNA and CC chemokines in breast milk but not vertical HIV type 1 transmission. AIDS Res Hum Retroviruses 23:198–203

    Article  PubMed  CAS  Google Scholar 

  182. Walter J, Kuhn L, Ghosh MK et al (2007) Low and undetectable breast milk interleukin-7 concentrations are associated with reduced risk of postnatal HIV transmission. J Acquir Immune Defic Syndr 46:200–207

    Article  PubMed  CAS  Google Scholar 

  183. Lyimo MA, Howell AL, Balandya E, Eszterhas SK, Connor RI (2009) Innate factors in human breast milk inhibit cell-free HIV-1 but not cell-associated HIV-1 infection of CD4+ cells. J Acquir Immune Defic Syndr 51:117–124

    Article  PubMed  Google Scholar 

  184. Saeland E, de Jong MA, Nabatov AA, Kalay H, Geijtenbeek TB, van Kooyk Y (2009) MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 46:2309–2316

    Article  PubMed  CAS  Google Scholar 

  185. Walter J, Ghosh MK, Kuhn L et al (2009) High concentrations of interleukin 15 in breast milk are associated with protection against postnatal HIV transmission. J Infect Dis 200:1498–1502

    Article  PubMed  CAS  Google Scholar 

  186. Lohman BL, Slyker J, Mbori-Ngacha D et al (2003) Prevalence and magnitude of human immunodeficiency virus (HIV) type 1-specific lymphocyte responses in breast milk from HIV-1-seropositive women. J Infect Dis 188: 1666–1674

    Article  PubMed  Google Scholar 

  187. Sabbaj S, Edwards BH, Ghosh MK et al (2002) Human immunodeficiency virus-specific CD8(+) T cells in human breast milk. J Virol 76:7365–7373

    Article  PubMed  CAS  Google Scholar 

  188. Sabbaj S, Ghosh MK, Edwards BH et al (2005) Breast milk-derived antigen-specific CD8+ T cells: an extralymphoid effector memory cell population in humans. J Immunol 174:2951–2956

    PubMed  CAS  Google Scholar 

  189. Miller M, Iliff P, Stoltzfus RJ, Humphrey J (2002) Breast milk erythropoietin and mother to child HIV transmission through breastmilk. Lancet 360:1246–1248

    Article  PubMed  CAS  Google Scholar 

  190. Arsenault JE, Webb AL, Koulinska IN, Aboud S, Fawzi WW, Villamor E (2010) Association between breast milk erythropoietin and reduced risk of mother-to-child transmission of HIV. J Infect Dis 202:370–373

    Article  PubMed  Google Scholar 

  191. Van De Perre P (2003) Transfer of antibody via mother’s milk. Vaccine 21:3374–3376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bélec M.D., Ph.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bélec, L., Kourtis, A.P. (2012). B Lymphocyte-Derived Humoral Immune Defenses in Breast Milk Transmission of the HIV-1. In: Kourtis, A., Bulterys, M. (eds) Human Immunodeficiency Virus type 1 (HIV-1) and Breastfeeding. Advances in Experimental Medicine and Biology, vol 743. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2251-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2251-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2250-1

  • Online ISBN: 978-1-4614-2251-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics