Skip to main content

Adsorption

  • Chapter
  • First Online:
Carbon Capture

Abstract

In an adsorption process a gas mixture contacts small porous particles, which can selectively adsorb or complex with CO2 for its effective removal from the gas mixture. Sorbent technologies may also be developed to capture CO2 indirectly by focusing on the selective adsorption of other gases in a given gas mixture, e.g., N2, O2, CH4, H2, etc. Adsorption is particularly known for its effectiveness in the separation of dilute mixtures. Molecules of CO2 may be held loosely by weak intermolecular forces, termed physisorption or strongly via covalent bonding, termed chemisorption. Generally, physisorption occurs when the heat of adsorption is less than approximately 10–15 kcal/mol, while chemisorption occurs with heats of adsorption greater than 15 kcal/mol. These are rules of thumb, however, and exceptions do exist. For instance, the heat of physisorption of CO2 in some zeolites has been reported to be as high as 50 kcal/mol, with heats of chemisorption known to extend from as low as 15 kcal/mol to over 100 kcal/mol. The heat of adsorption is a direct measure of the binding strength between a fluid molecule and the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Freundlich isotherm differs from Langmuir in that at high \({{p}_{{{\textit{CO}}_{2}}}} \) , the sorbent loading continues to increase, while for the Langmuir case the loading approaches monolayer coverage; \(W=k{{\left( \frac{p}{{{p}_{0}}} \right)}^{{1 / n}}} \) , such that k and n are fitting parameters.

References

  1. Keller GE, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York

    Google Scholar 

  2. Reprinted from Unit Operations of Chemical Engineering, 7th Ed., McCabe WL, Smith JC, Harriott P, Copyright (2005), with permission from McGraw-Hill Companies, Inc.

    Google Scholar 

  3. Reprinted with permission of John Wiley & Sons, Inc., Ruthven DM (1997) Encyclopedia of separation technology, vol I. Adsorption, gas separation

    Google Scholar 

  4. Reprinted from Characterization of porous solids III, Jagiello J, Bandosz TJ, Putyera K, Schwarz JA Adsorption energy and structural heterogeneity of activated carbons, Copyright (1994), with permission from Elsevier

    Google Scholar 

  5. With kind permission from Springer Science + Business Media B.V., Springer and Kluwer Academic Pub, Characterization of porous solids and powders: surface area, pore size, and density, Lowell S, Shields JE, Thomas MA, Thommes M (2004) 39

    Google Scholar 

  6. Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansai RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787

    Google Scholar 

  7. Sing KSW, Everett DG, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (2008) In: Ertl H et al (eds) Reporting physisorption data for gas/solid systems. Handbook of heterogeneous catalysis, pp 1217–1230. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

    Google Scholar 

  8. Reprinted with permission from Ind Eng Chem Res, Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ Hollow fiber adsorbents for CO2 removal from flue gas (Copyright 2009). American Chemical Society

    Google Scholar 

  9. Courtesy of Christopher E. Wilmer, Northwestern University (2011)

    Google Scholar 

  10. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken, p 415

    Google Scholar 

  11. Medek J (1977) Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56(2):131–133

    Google Scholar 

  12. Shen D, Bülow M, Siperstein F, Engelhard M, Myers AL (2000) Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6(4):275–286

    Google Scholar 

  13. Yang Q, Zhong C, Chen JF (2008) Computational study of CO2 storage in metal-organic frameworks. J Phys Chem C 112(5):1562–1569

    Google Scholar 

  14. (a) Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424; (b) Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen SBT, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948

    Google Scholar 

  15. (a) Green DW (2008) Perry’s chemical engineers’ handbook. McGraw-Hill, New York; (b) Hagen J (2006) Industrial catalysis: a practical approach, 2nd edn. Wiley-VCH Verlag GmbH &Co, Weinheim, p 525; (c) Rubel AM, Stencel JM (1996) Effect of pressure on NOx adsorption by activated carbons. Energy Fuels 10(3):704–708; (d) Moon SI, Extrand CW (2011) Hydrogen chloride and ammonia permeation resistance of tetrafluoroethylene-perfluoroalkoxy copolymers. Ind Eng Chem Res 50(5), pp 2905–2909; (e) Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  16. (a) Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton, p 2736; (b) Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, p 433

    Google Scholar 

  17. (a) Ruthven DM (1997) Encyclopedia of separation technology. Wiley, New York; (b) Buckingham AD (1959) Molecular quadrupole moments. Q Rev Chem Soc 13(3):183–214; (c) Stogryn DE, Stogryn AP (1966) Molecular multipole moments. Mol Phys 11(4):371–393; (d) Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1986) Molecular thermodynamics of fluid-phase equilibria. Prentice-Hall, Upper Saddle River

    Google Scholar 

  18. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    Google Scholar 

  19. Thorny A, Duval X (1994) Stepwise isotherms and phase transitions in physisorbed films. Surf Sci 299:415–425

    Google Scholar 

  20. Polley MH, Schaeffer WD, Smith WR (1953) Development of stepwise isotherms on carbon black surfaces. J Phys Chem US 57(4):469–471

    Google Scholar 

  21. Greenhalgh E, Redman E (1967) Stepped isotherms on carbons. J Phys Chem US 71(4):1151–1152

    Google Scholar 

  22. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):361–1403

    Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Google Scholar 

  24. De Boer JH (1968) Dynamical character of adsorption, 2nd edn. Oxford University Press, London, p 256

    Google Scholar 

  25. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer, Dordrecht, p 347

    Book  Google Scholar 

  26. Thiele EW (1939) Relation between catalytic activity and size of particle. Ind Eng Chem 31(7):916–920

    Google Scholar 

  27. Juttner F (1909) Reaktionskinetik und Diffusion. Z Elektrochem Angew P 15 6:169–170

    Google Scholar 

  28. (a) Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Gas adsorption sites in a large-pore metal-organic framework. Science 309(5739):1350; (b) Collins DJ, Zhou HC (2007) Hydrogen storage in metalñorganic frameworks. J Mater Chem 17(30):3154–3160; (c) D’alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Google Scholar 

  29. (a) Deng S (2006) In: Lee S (ed) Encyclopedia of chemical processing, vol 5. Taylor & Francis Group, New York 2006; (b) Tan X, Liu S, Li K (2001) Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 188(1):87–95

    Google Scholar 

  30. The Techno Source. http://www.thetechnosource.net/adsorbents-dessicants.html

    Google Scholar 

  31. (a) Kim S, Ida J, Guliants VV, Lin JYS (2005) Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J Phys Chem B 109(13):6287–6293; (b) Sjostrom S, Krutka H (2010) Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89(6):1298–1306; (c) Sjostrom S, Krutka H, Starns T, Campbell T (2011) Pilot test results of post-combustion CO2 capture using solid sorbents. Energy Proc 4:1584–1592

    Google Scholar 

  32. (a) McKenzie AL, Fishel CT, Davis RJ (1992) Investigation of the surface structure and basic properties of calcined hydrotalcites. J Catal 138(2):547–561; (b) Occelli ML, Olivier J, Auroux A, Kalwei M, Eckert H (2003) Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chem Mater 15(22):4231–4238; (c) Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854

    Google Scholar 

  33. (a) Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81(4):611–621; (b) Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4:3805–3819

    Google Scholar 

  34. Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansal RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787

    Google Scholar 

  35. Lewis WK, Gilliland ER, Chertow B, Cadogan WP (1950) Pure gas isotherms. Ind Eng Chem 42(7):1326–1332

    Google Scholar 

  36. (a) Nandi SP, Walker Jr PL (1975) Carbon molecular sieves for the concentration of oxygen from air. Fuel 54(3):169–178; (b) Koresh J, Soffer A (1980) Study of molecular sieve carbons. Part 1—Pore structure, gradual pore opening and mechanism of molecular sieving. J Chem Soc Farad Trans 1 76:2457–2471

    Google Scholar 

  37. Gan H, Nandi SP, Walker Jr PL (1972) Nature of the porosity in American coals. Fuel 51(4):272–277

    Google Scholar 

  38. (a) Jüntgen H, Seewald H (1975) Charakterisierung der Porenstruktur mikroporser Adsorbentien aus Kohlenstoff Ber Bunsenges. Phys Chem 79(9):734–738; (b) Moore SV, Trimm DL (1977) The preparation of carbon molecular sieves by pore blocking. Carbon 15(3):177–180

    Google Scholar 

  39. Juntgen H (1977) New applications for carbonaceous adsorbents. Carbon 15(5):273–283

    Google Scholar 

  40. Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor Mesopor Mater 91(1–3):78–84

    Google Scholar 

  41. Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640

    Google Scholar 

  42. Banerjee R, Furukawa H, Britt D, Knobler C, OíKeeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131(11):3875–3877

    Google Scholar 

  43. (a) Bae YS, Snurr RQ (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Edit 50:11586–11596; (b) Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821; (c) James SL (2003) Metal-organic frameworks. Chem Soc Rev 32(5):276–288; (d) Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility: metal-organic open frameworks. Micropor Mesopor Mater 73(1–2):15–30; (e) Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mater 73(1–2):3–14; (f) Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636; (g) Keskin S, Liu J, Rankin RB, Johnson JK, Sholl DS (2008) Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind Eng Chem Res 48(5):2355–2371

    Google Scholar 

  44. Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow fiber adsorbents for CO2 removal from flue gas. Ind Eng Chem Res 48(15):7314–7324

    Google Scholar 

  45. Dubinin MM, Radushkevich LV (1966) Evaluation of microporous materials with a new isotherm. Dokl Akad Nauk SSSR 55:331–347

    Google Scholar 

  46. Dubinin MM, Asthakov VA (1970) Prediction of gas-phase adsorption isotherms. Adv Chem Ser 102:69–81

    Google Scholar 

  47. Horvath G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16(6):470–475

    Google Scholar 

  48. Thommes M (2010) Phsical adsorption characterization of nanoporous materials. Chemie Ingenieur Techni 82:1056–1073

    Google Scholar 

  49. (a) Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV (2000) Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5):2311–2320; (b) Cazorla-Amoros D, Alcaniz-Monge J, De la Casa-Lillo MA, Linares-Solano A (1998) CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16):4589–4596; (c) Cazorla-Amorüs D, Alcaòiz-Monge J, Linares-Solano A (1996) Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11):2820–2824

    Google Scholar 

  50. Kuwabara H, Suzuki T, Kaneko K (1991) Ultramicropores in microporous carbon fibres evidenced by helium adsorption at 4.2 K. J Chem Soc Farad T 87(12):1915–1916

    Google Scholar 

  51. Manovic V, Anthony EJ (2009) Screening of binders for pelletization of CaO-based sorbents for CO2 capture. Energy Fuels 23(10):4797–4804

    Google Scholar 

  52. Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH (2008) Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Micropor Mesopor Mater 114(1–3):74–81

    Google Scholar 

  53. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16(6):1463–1469

    Google Scholar 

  54. (a) Scott DS, Dullien FAL (1962) Diffusion of ideal gases in capillaries and porous solids. Am Inst Chem Eng 8(1):113–117; (b) Evans III RB, Watson GM, Mason EA (1961) Gaseous diffusion in porous media at uniform pressure. J Chem Phys 35:2076; (c) Rothfeld LB (1963) Gaseous counter diffusion in catalyst pellets. Am Inst Chem Eng 9(1):19–24

    Google Scholar 

  55. Maxwell JC (1860) Illustrations of the dynamical theory of gases. Philos Mag 19(1860):19–32

    Google Scholar 

  56. (a) Mason EA, Evans III RB, Watson GM (1963) Gaseous diffusion in porous media. III. Thermal transpiration. J Chem Phys 38:1808; (b) Jackson R (1977) Transport in porous catalysts. Elsevier, Amsterdam, p 197; (c) Cunningham RE, Williams RJJ (1980) Diffusion in gases and porous media. Plenum Press, New York

    Google Scholar 

  57. Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York, p 605

    Google Scholar 

  58. Carman PC, Raal FA (1951) Diffusion and flow of gases and vapours through micropores. III. Surface diffusion coefficients and activation energies. Proc R Soc Lond A Mater 209(1096):38

    CAS  Google Scholar 

  59. Weisz PB (1975) Diffusion transport in chemical systems—key phenomena and criteria. Ber Bunsenges Phys Chem 79(9):798–806

    Google Scholar 

  60. (a) Wakao N, Funazkri T (1978) Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds correlation of sherwood numbers. Chem Eng Sci 33(10):1375–1384; (b) Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach, Science Publishers, Inc., New York, p 365

    Google Scholar 

  61. Glueckauf E (1955) Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551

    Google Scholar 

  62. McCabe WL, Smith JC, Harriott P (2005) Unit operations of chemical engineering, 7th edn. McGraw-Hill, New York

    Google Scholar 

  63. Luss D (1986) In: Carberry J, Varma A (eds) Chemical reaction and reactor engineering, vol 26. Chemical Industries, New York, p 239

    Google Scholar 

  64. Carberry JJ, Kulkarni AA (1973) The non-isothermal catalytic effectiveness factor for monolith supported catalysts. J Catal 31(1):41–50

    Google Scholar 

  65. (a) Carberry JJ (1975) On the relative importance of external-internal temperature gradients in heterogeneous catalysis. Ind Eng Chem Fund 14(2):129–131; (b) Dullien FAL (1975) New network permeability model of porous media. AIChE J 21(2):299–307

    Google Scholar 

  66. Langer G, Roethe A, Roethe KP, Gelbin D (1978) Heat and mass transfer in packed beds–III. Axial mass dispersion. Int J Heat Mass Trans 21(6):751–759

    Google Scholar 

  67. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5(2):212–223

    Google Scholar 

  68. Collins JJ (1967) The LUB/equilibrium section concept for fixed-bed adsorption. In Chemical engineering progress symposium, Science Press, pp 31–35

    Google Scholar 

  69. Acharya A, BeVier WE (1985) Attrition resistant molecular sieve. Union Carbide Corporation, Danbury

    Google Scholar 

  70. Keller GEI, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, pp 644–696

    Google Scholar 

  71. Poiseuille JLM (1846) Recherches experimentales aur le mouvements les liquides dans les tubes de tres petits diametres. Inst France Acad Sci 9:433–545

    Google Scholar 

  72. Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, p 674

    Google Scholar 

  73. Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. In: Sitzungsberichte der Wiener Akademie der Wissenschaften, Vienna, 1927, vol 139(Kl.abt.IIa), pp 271–306

    Google Scholar 

  74. Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(02):262–273

    Google Scholar 

  75. Burke SP, Plummer WB (1928) Gas flow through packed columns 1. Ind Eng Chem 20(11):1196–1200

    Google Scholar 

  76. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89

    Google Scholar 

  77. Chilton TH, Colburn AP (1931) II-Pressure drop in packed tubes. Ind Eng Chem 23(8):913–919

    Google Scholar 

  78. (a) Furnas CC (1929) The flow of gases through beds of broken solids. Bureau of Mines, Washington, DC, p 164; (b) Leva M (1949) Fluid flow through packed beds. Chem Eng 56(5):115

    Google Scholar 

  79. (a) Clausse M, Bonjour J, Meunier F (2003) Influence of the presence of CO2 in the feed of an indirect heating TSA process for VOC removal. Adsorption 9(1):77–85; (b) Bonjour J, Chalfen JB, Meunier F (2002) Temperature swing adsorption process with indirect cooling and heating. Ind Eng Chem 41(23):5802–5811; (c) Merel J, Clausse M, Meunier F (2008) Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5 A zeolites. Ind Eng Chem 47(1):209–215

    Google Scholar 

  80. Pugsley T, Berruti F, Chakma A (1994) Computer simulation of a novel circulating fluidized bed pressure-temperature swing adsorber for recovering carbon dioxide from flue gases. Chem Eng Sci 49(24):4465–4481

    Google Scholar 

  81. Suzuki T, Sakoda A, Suzuki M, Izumi J (1997) Recovery of carbon dioxide from stack gas by piston-driven ultra-rapid PSA. J Chem Eng Jpn 30(6):1026–1033

    Google Scholar 

  82. Park JH, Beum HT, Kim JN, Cho SH (2002) Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind Eng Chem 41(16):4122–4131

    Google Scholar 

  83. Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energ Fuel 23(5):2785–2789

    Google Scholar 

  84. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, NewYork

    Google Scholar 

  85. Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640

    Google Scholar 

  86. Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar SG, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu3 (BTC)2: an effective activation procedure. J Phys Chem C 111(26):9305–9313

    Google Scholar 

  87. Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2005) Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind Eng Chem Res 44(9):3099–3105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Wilcox .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilcox, J. (2012). Adsorption. In: Carbon Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2215-0_4

Download citation

Publish with us

Policies and ethics