High Resolution ExitWave Restoration

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

We review the use of restoration methods that recover the complex specimen exit wave from a suitably conditioned data set of high resolution transmission electron microscope images. Various levels of theory underlying the post-acquisition processing required are described together with the requirements for aberration measurement.

Keywords

Attenuation Tungsten Coherence GaAs Convolution 

References

  1. 1.
    Schiske P (1968) Image reconstruction by means of focal series. Fourth Regional Congress on Electron Microscopy, RomeGoogle Scholar
  2. 2.
    Saxton WO (1988) Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. Scanning Microsc Suppl. 2(SUPPL.):213–224Google Scholar
  3. 3.
    Saxton WO (1994) What is the focus variation method—is it new—is it direct. Ultramicroscopy 55(2):171–181CrossRefGoogle Scholar
  4. 4.
    Coene WMJ, Janssen G et al (1992) Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron-microscopy. Phys Rev Lett 69(26):3743–3746CrossRefGoogle Scholar
  5. 5.
    Van Dyck D, De Beeck MO et al (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93(3):103–107Google Scholar
  6. 6.
    op de Beeck M, Van Dyck D et al (1996) Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy 64(1–4):167–183Google Scholar
  7. 7.
    Lichte H, Formanek P et al (2007) Electron holography: applications to materials questions. Ann Rev Mater Res 37(1):539–588CrossRefGoogle Scholar
  8. 8.
    Midgley PA (2001) An introduction to off-axis electron holography. Micron 32(2):167–184CrossRefGoogle Scholar
  9. 9.
    Scherzer O (1936) Über einige Fehler von Elektronenlinsen. Zeitschrift für Physik 101:593–603CrossRefGoogle Scholar
  10. 10.
    Haider M, Rose H et al (1998) A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1):53–60CrossRefGoogle Scholar
  11. 11.
    Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85(1):19–24Google Scholar
  12. 12.
    Urban K, Kabius B et al (1999) A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48(6):821–826Google Scholar
  13. 13.
    Hetherington CJD, Chang LYS et al (2008) High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14:60–67CrossRefGoogle Scholar
  14. 14.
    Tillmann K, Thust A et al (2004) Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microscopy Microanal 10(2):185–198CrossRefGoogle Scholar
  15. 15.
    Hawkes PW (2007) “Aberration correction” in Science of Microscopy, Vol 1. Springer, p 696–747Google Scholar
  16. 16.
    Hawkes PW, Kasper E (1989,1994) Principles of electron optics. Academic, LondonGoogle Scholar
  17. 17.
    Kirkland AI, Meyer RR et al (2006) Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12(6):461–468CrossRefGoogle Scholar
  18. 18.
    Krivanek OL, Dellby N et al (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4):1–11CrossRefGoogle Scholar
  19. 19.
    Typke D, Dierksen K (1995) Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99(4):155–166Google Scholar
  20. 20.
    Born M, Wolf E (1980) Principles of optics. Pergamon, OxfordGoogle Scholar
  21. 21.
    Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum Press, New York and LondonGoogle Scholar
  22. 22.
    Reimer L (1997, 2008) Transmission electron microscopy. SpringerGoogle Scholar
  23. 23.
    Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5):519–536Google Scholar
  24. 24.
    Hawkes PW (1978) Coherence in electron optics. Adv Opt Electron Microsc 7:101–184Google Scholar
  25. 25.
    Wade RH, Frank J (1977) Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49:81–92Google Scholar
  26. 26.
    Kirkland AI, Nellist PD et al (2008) Chapter 8 In Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron microscopy. Advances in imaging and electron physics, Vol 153. Elsevier, pp 283–325Google Scholar
  27. 27.
    Haigh SJ, Sawada H et al (2009) Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12):126101–126104CrossRefGoogle Scholar
  28. 28.
    Haigh SJ, Sawada H et al (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc Lond A 367(1903):3755–3771CrossRefGoogle Scholar
  29. 29.
    Kirkland AI, Saxton WO et al (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46(1):11–22Google Scholar
  30. 30.
    Kirkland AI, Saxton WO et al (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57(4):355–374CrossRefGoogle Scholar
  31. 31.
    Hopkins HH (1951) The concept of partial coherence in optics. Proc R Soc Lond A Math Phys Sci 208(1093):263–277CrossRefGoogle Scholar
  32. 32.
    Hopkins HH (1953) On the diffraction theory of optical images. Proc R Soc Lond A Math Phys Sci 217(1130):408–432CrossRefGoogle Scholar
  33. 33.
    Hanssen KJ, Trepte L (1971) Influence of voltage and current fluctuations and of a finite energy width of electrons on contrast and resolution in electron microscopy. Optik 32(6):519Google Scholar
  34. 34.
    Ishizuka K, Fujiyoshi Y et al (1979) Effects of the envelope function on high-resolution electron-microscope images. J Electron Microsc 28(3):226–226Google Scholar
  35. 35.
    Ishizuka K (1980) Contrast transfer of crystal images in TEM. Ultramicroscopy 5(1–3):55–65CrossRefGoogle Scholar
  36. 36.
    Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49(3):269–280CrossRefGoogle Scholar
  37. 37.
    Meyer RR, Kirkland AI et al (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85(1):9–13CrossRefGoogle Scholar
  38. 38.
    Kirkland AI, Chang LY (2005) An assessment of imaging models for exit wave restoration. Microsc Microanal 11(SupplementS02):2152–2153Google Scholar
  39. 39.
    Coene WMJ, Thust A et al (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64(1–4):109–135CrossRefGoogle Scholar
  40. 40.
    Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy 15(3):151–172CrossRefGoogle Scholar
  41. 41.
    Kirkland EJ, Siegel BM et al (1982) Non-linear high-resolution image-processing of conventional transmission electron-micrographs. 2. Experiment. Ultramicroscopy 9(1–2):65–74Google Scholar
  42. 42.
    Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619Google Scholar
  43. 43.
    Cowley JM, Moodie AF (1962) The scattering of electrons by thin crystals. J Phys Soc Jpn 17(suppl. B.II):86–91Google Scholar
  44. 44.
    Spence JCH (1988) Experimental high resolution electron microscopy. Oxford University Press, New YorkGoogle Scholar
  45. 45.
    Grinton GR, Cowley JM (1971) Phase and amplitude contrast in electron micrographs of biological materials. Optik - Int J Light Electron Opt 34:221Google Scholar
  46. 46.
    Yoshioka H (1957) The effect of inelastic waves on electron diffraction. J Phys Soc Jpn 12:618CrossRefGoogle Scholar
  47. 47.
    Li FH (1998) Image processing based on the combination of high-resolution electron microscopy and electron diffraction. Microsc Res Tech 40(2):86–100CrossRefGoogle Scholar
  48. 48.
    Tang D, Li FH (1988) A method of image-restoration for pseudo-weak-phase objects. Ultramicroscopy 25(1):61–67CrossRefGoogle Scholar
  49. 49.
    Honda T, Tomita T et al (1994) Field emission ultrahigh-resolution analytical electron microscope. Ultramicroscopy 54(2–4):132–144CrossRefGoogle Scholar
  50. 50.
    Otten MT, Coene WMJ (1993) High-resolution imaging on a field emission TEM. Ultramicroscopy 48(1–2):77–91CrossRefGoogle Scholar
  51. 51.
    Erasmus S, Smith K (1982) An automatic focusing and astigmatism correction system for the SEM and CTEM. J Microsc 127:185–199CrossRefGoogle Scholar
  52. 52.
    Saxton WO, Smith DJ et al (1983) Procedures for focusing, stigmating and alignment in high-resolution electron-microscopy. J Microsc 130(MAY):187–201CrossRefGoogle Scholar
  53. 53.
    Fu Q, Lichte H et al (1991) Correction of aberrations of an electron microscope by means of electron holography. Phys Rev Lett 67(17):2319–2322CrossRefGoogle Scholar
  54. 54.
    Tang D, Zandbergen HW et al (1996) Fine-tuning of the focal residue in exit-wave reconstruction. Ultramicroscopy 64(1–4):265–276CrossRefGoogle Scholar
  55. 55.
    Lehmann M (2000) Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85(3):165–182CrossRefGoogle Scholar
  56. 56.
    Koster AJ, van den Bos A et al (1987) An autofocus method for a TEM. Ultramicroscopy 21(3):209–221CrossRefGoogle Scholar
  57. 57.
    Koster AJ (1989) Practical autotuning of a transmission electron microscope. Ultramicroscopy 31(4):473–474CrossRefGoogle Scholar
  58. 58.
    Saxton WO, Chand G et al (1994) Accurate determination and compensation of lens aberrations in high resolution EM. Electron Microscopy 1994, Vol 1—Interdisciplinary Developments and Tools: 203–204Google Scholar
  59. 59.
    Krivanek OL, Leber ML (1994). Autotuning for 1 angstrom resolution. Electron Microsc 1:157–158Google Scholar
  60. 60.
    Thon F (1966) Imaging properties of the electron microscope near the theoretical limit of resolution. 6th Intern. congr. on electron microscopy, KyotoGoogle Scholar
  61. 61.
    Coene WMJ, Denteneer TJJ (1991) Improved methods for the determination of the spherical-aberration coefficient in high-resolution electron-microscopy from micrographs of an amorphous object. Ultramicroscopy 38(3–4):225–233CrossRefGoogle Scholar
  62. 62.
    Krivanek OL (1976) Method for determining coefficient of spherical aberration from a single electron micrograph. Optik 45(1):97–101Google Scholar
  63. 63.
    Typke D, Köstler D (1977) Determination of the wave aberration of electron lenses from superposition diffractograms of images with differently tilted illumination. Ultramicroscopy 2:285–295CrossRefGoogle Scholar
  64. 64.
    Zemlin F, Weiss K et al (1978) Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3:49–60CrossRefGoogle Scholar
  65. 65.
    Smith DJ, Saxton WO et al (1983) The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11(4):263–281CrossRefGoogle Scholar
  66. 66.
    Meyer RR, Kirkland AI et al (2002) A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92(2):89–109Google Scholar
  67. 67.
    Meyer RR, Kirkland AI et al (2004) A new method for the determination of the wave aberration function for high-resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99(2–3):115–123Google Scholar
  68. 68.
    Saxton WO (1995) Observation of lens aberrations for very high-resolution electron-microscopy. 1. Theory. J Microsc 179:201–213CrossRefGoogle Scholar
  69. 69.
    Baba N, Oho E, Kanaya K (1987) An algorithm for online digital image processing for assisting automatic focussing and astigmatism correction in electron microscopy. Scanning Microscopy 1(4):1507–1514Google Scholar
  70. 70.
    Fan G, Krivanek O (1990) Computer controlled HREM alignment using automated diffractogram analysis. In: Peachy L, Williams DJS (ed) 12th ICEM, Vol 1. San Francisco Press, Seattle, pp 332–333Google Scholar
  71. 71.
    Uhlemann S, Haider M (1998) Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72(3–4):109–119CrossRefGoogle Scholar
  72. 72.
    Van Heel M, Schatz M et al (1992) Correlation-functions revisited. Ultramicroscopy 46(1–4):307–316CrossRefGoogle Scholar
  73. 73.
    Kuglin CD, Hines DC (1975) The phase correlation image alignment method. Proceedings of the IEEE 1975 International Conference on Cybernetics and Society, New YorkGoogle Scholar
  74. 74.
    Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New YorkGoogle Scholar
  75. 75.
    Meyer RR, Kirkland AI (1998) The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1):23–33CrossRefGoogle Scholar
  76. 76.
    Hashimoto H, Endoh H et al (1998) Pseudo-aberration free focus condition for atomic resolution electron microscope images. Micron 29(2–3):113–121CrossRefGoogle Scholar
  77. 77.
    O’Keefe MA, Nelson EC et al (2001) Sub-angstrom resolution of atomistic structures below 0.8 angstrom. Philos Mag B 81(11):1861–1878Google Scholar
  78. 78.
    Chang LY, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12(6):469–475CrossRefGoogle Scholar
  79. 79.
    Allen LJ, McBride W et al (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100(1–2):91–104CrossRefGoogle Scholar
  80. 80.
    Allen LJ, McBride W et al (2004) Investigation of the effects of partial coherence on exit wave reconstruction. J Microsc 216:70–75CrossRefGoogle Scholar
  81. 81.
    Chang LY, Meyer RR et al (2005) Calculation of HREM image intensity using Monte Carlo integration. Ultramicroscopy 104:271–280CrossRefGoogle Scholar
  82. 82.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numercial recipes in C\(++\): The art of scientific computing. Cambridge University Press, Cambridge.Google Scholar
  83. 83.
    Teague MR (1983) Deterministic phase retrieval—a green-function solution. J Opt Soc Am 73(11):1434–1441CrossRefGoogle Scholar
  84. 84.
    Nugent KA, Gureyev TE et al (1996) Quantitative phase imaging using hard X-rays. Phys Rev Lett 77(14):2961–2964CrossRefGoogle Scholar
  85. 85.
    Paganin D, Mayo SC et al (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRefGoogle Scholar
  86. 86.
    Streibl N (1985) Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2):121–127CrossRefGoogle Scholar
  87. 87.
    McMahon PJ, Barone-Nugent ED et al (2002) Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM. J Microsc 206(3):204–208CrossRefGoogle Scholar
  88. 88.
    Bajt S, Barty A et al (2000) Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy 83(1–2):67–73CrossRefGoogle Scholar
  89. 89.
    Beleggia M, Schofield MA et al (2004) On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1):37–49CrossRefGoogle Scholar
  90. 90.
    Martin AV, Chen FR et al (2006) Spatial incoherence in phase retrieval based on focus variation. Ultramicroscopy 106(10):914–924CrossRefGoogle Scholar
  91. 91.
    Ishizuka K, Allman B (2005) Phase measurement of atomic resolution image using transport of intensity equation. J Electron Microsc 54(3):191–197CrossRefGoogle Scholar
  92. 92.
    Hsieh WK, Chen FR et al (2004) Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98(2–4):99–114CrossRefGoogle Scholar
  93. 93.
    Chang LY, Kirkland AI et al (2006) On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106(4–5):301–306CrossRefGoogle Scholar
  94. 94.
    Petersen TC, Keast VJ (2007) Astigmatic intensity equation for electron microscopy based phase retrieval. Ultramicroscopy 107(8):635–643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MaterialsOxfordUK
  2. 2.University of Manchester Materials Science CentreManchesterUK
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations