Skip to main content

Analyzing the Papaya Genome

  • Chapter
  • First Online:
  • 1086 Accesses

Part of the book series: Advances in Microbial Ecology ((AMIE))

Abstract

Papaya is a major fruit crop in tropical and subtropical regions worldwide. It has long been recognized as a nutritious fruit with medicinal properties. It has a small genomes and highly homozygous because hermaphrodite varieties are self-pollinated. The novel features of nascent sex chromosomes in papaya and its agricultural importance are additional justifications for sequencing the genome. A female plant of the transgenic variety SunUp was selected for sequencing to avoid the complication of assembling the XY chromosomes in a male or hermaphrodite plant. The draft genome revealed fewer genes than sequenced genomes of flowering plants, partly due to its lack of genome-wide duplication since the ancient triplication event shared by eudicots. Most gene families have fewer members in papaya, including significantly fewer disease resistance genes. However, striking amplifications in gene number were found in some functional groups, including MADS-box genes, starch synthases, and volatiles that might affect the speciation and adaptation of papaya. The draft genome was used to accelerate the construction of physical maps of sex chromosomes in papaya and to clone a gene controlling fruit flesh color. The papaya draft genome, integrated genetic and physical maps, the EST database, and other genomic resources built for the genome sequencing project will expedite papaya improvement and the exploration of its nutritional and medicinal applications in developing countries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arias R, Lee TC, Logendra L, Janes H (2000) Correlation of lycopene measured by HPLC with the L, a, b color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J Agric Food Chem 48:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Blas A, Qingyi Y, Cuixia C, Veatch O, Moore P, Paull R, Ming R (2009) Enrichment of a papaya high-density genetic map with AFLP markers. Genome 52(8):716–725

    Article  PubMed  CAS  Google Scholar 

  • Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q (2010) Cloning of the papaya chromoplast-specific lycopene µ-Cyclas, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152:2013–2022

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci 355:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177:2481–2491

    Article  PubMed  CAS  Google Scholar 

  • Ching LS, Mohamed S (2001) Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem 49:3101–3105

    Article  PubMed  CAS  Google Scholar 

  • Datta PC (1971) Chromosomal biotypes of Carica papaya Linn. Cytologia 36:555–562

    Article  Google Scholar 

  • Devitt LC, Fanning K, Dietzgen RG, Holton TA (2010) Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J Exp Bot 61:33–39

    Article  PubMed  CAS  Google Scholar 

  • Dunne J, Horgan L (1992) Meat tenderizers. In: Hui YH (ed) Encyclopedia of food science and technology. Wiley, New York, pp 1745–1751

    Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (Accssed 15 Feb, 2012)

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissue bombarded with the coat protein gene of papaya ringspot virus. Biotechnol 10:1466–1472

    Article  CAS  Google Scholar 

  • Gschwend AR, Yu Q, Moore P, Saski C, Chen C, Wang J, Na J-K, Ming R (2011) Construction of papaya male and female BAC libraries and application in physical mapping of the sex chromosomes. J Biomed Biotechnol doi:10.1155/2011/929472

    Google Scholar 

  • Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87:54–59

    Google Scholar 

  • Heilborn O (1921) Taxonomical and cytological studies on cultivated Ecuodorian species of Carica. Ark Bot 17:1–16

    Google Scholar 

  • Hofmeyr JDJ (1938) Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. S Afr Dept Agri Sci Bul 187:64

    Google Scholar 

  • Horovitz S, Jiménez H (1967) Cruzamientos interspecificos e intergenericos en caricaceas y sus implicaciones fitotechicas. Agron Trop 17:323–43

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kumar LSS, Abraham A, Srinivasan VK (1945) The cytology of Carica papaya Linn. Indian J Agr Sci 15:242–253

    Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–52

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    Article  PubMed  CAS  Google Scholar 

  • Mello VJ, Gomes MT, Lemos FO, Delfino JL, Andrade SP, Lopes MT, Salas CE (2008) The ­gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine 15:237–244

    Article  PubMed  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and ­apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    Article  CAS  Google Scholar 

  • Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–8

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorgham bicolor genome and the diversification of grasses. Nature 457:551–6

    Article  PubMed  CAS  Google Scholar 

  • Pecker I, Gabbay R, Cunningham FX Jr, Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30:807–819

    Article  PubMed  CAS  Google Scholar 

  • Pedro CDJ, da Costa FR, Pereira TNS, Neto MF, Pereira MG (2009) Karyotype determination in three Caricaceae species emphasizing the cultivated form (C. papaya L.). Caryologia 62:10–15

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–83

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–5

    Article  PubMed  CAS  Google Scholar 

  • Seigler DS, Pauli GF, Nahrstedt A, Leen R (2002) Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry 69:873–882

    Article  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–16

    Article  PubMed  CAS  Google Scholar 

  • Skelton RL, Yu Q, Srinivasan R, Manshardt R, Moore PH, Ming R (2006) Tissue differential expression of lycopene beta-cyclase gene in papaya. Cell Res 16:731–739

    Article  PubMed  CAS  Google Scholar 

  • Storey WB (1938) Segregation of sex types in Solo papaya and their application to the selection of seed. Proc Amer Soc Hort Sci 35:83–85

    Google Scholar 

  • Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agric Exp Stn Bull 87:5–22

    Google Scholar 

  • Storey WB (1953) Genetics of papaya. J Hered 44:70–78

    Google Scholar 

  • Storey WB (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. H Veenman & Zonen, Wageningen, pp 21–24

    Google Scholar 

  • Storey WB (1976) Papaya. In: Simmonds NW (ed) Evolution of crop plants. Longman, London/New York, pp 21–24

    Google Scholar 

  • Suzuki JY, Tripathi S, Fermín GA, Jan F-J, Hou S, Saw H, Ackerman CM, Yu Q, Schatz MC, Pitz KY, Yépes M, Fitch MMM, Manshardt RM, Slightom JL, Ferreira SA, Salzberg SL, Alam M, Ming R, Moore PH, Gonsalves D (2008) Characterization of insertion sites in Rainbow papaya, the first commercialized transgenic fruit crop. Trop Plant Biol 1:293–309

    Article  CAS  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus  ×  domestica Borkh.). Nat Genet 42:833–41

    Article  PubMed  CAS  Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    Article  PubMed  CAS  Google Scholar 

  • Wai CM, Yu QY, Moore PH, Paull RE, Ming R (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Trop Plant Biol 3:171–181

    Article  Google Scholar 

  • Watson B (1997) Agronomy/Agroclimatology notes for the production of papaya. Min Agric, Forests Fisheries Meterol, Australia

    Google Scholar 

  • WHO (2007) Vitamin A deficiency. World Health Organization

    Google Scholar 

  • Yamamoto HY (1964) Comparison of the Carotenoids in yellow- and red-fleshed Carica Papaya. Nature 201:1049–1050

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Hobza R, Feltus FA, Wang X et al (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–85

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Feltus A, Jones MR, Murray JE et al (2008a) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–32

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Navajas-Perez R, Tong E, Robertson J, Moore PH et al (2008b) Recent origin of Dioecious and Gynodioecious Y chromosomes in papaya. Trop Plant Biol 1:49–57

    Article  Google Scholar 

  • Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo MC, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371

    Article  PubMed  Google Scholar 

  • Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Zhang WL, Wai CM, Ming R, Yu QY, Jiang JM (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3:166–170

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the following agencies and programs for funding relevant parts of the research: NSF Plant Genome Research Program (Award No. DBI-0922545), USDA-ARS Cooperative Agreements with the Hawaii Agriculture Research Center, USDA T-STAR program through the University of Hawaii at Manoa, and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Man Wai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wai, C.M., Han, J., Singh, R., Aryal, R., Wang, ML., Ming, R. (2012). Analyzing the Papaya Genome. In: Nelson, K., Jones-Nelson, B. (eds) Genomics Applications for the Developing World. Advances in Microbial Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2182-5_18

Download citation

Publish with us

Policies and ethics