Critical Zeros of Zeta Functions

  • Michel L. Lapidus
  • Machiel van Frankenhuijsen
Part of the Springer Monographs in Mathematics book series (SMM)


As we saw in Chapter 10, the complex dimensions of a generalized Cantor string form an arithmetic progression {D + inp} nZ, with 0 D 1 and p 0. In this chapter we use this fact to study arithmetic progressions of critical zeros of zeta functions.


Explicit Formula Zeta Function Dirichlet Series Arithmetic Progression Counting Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michel L. Lapidus
    • 1
  • Machiel van Frankenhuijsen
    • 2
  1. 1.Department of MathematicsUniversity of California, RiversideRiversideUSA
  2. 2.Department of MathematicsUtah Valley UniversityOremUSA

Personalised recommendations