• Sungchul Ji


As already alluded to in Preface, the American paleontologist Gaylord Simpson (1964) made a statement to the effect that Physicists study the principles that apply to all phenomena; biologists study phenomena to which all principles apply.


Shannon Entropy Myosin Head Molecular Machine Shannon Information Binary Digit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, D., Davies, P.C., Pati, A.K.: Quantum Aspects of Life, pp. 349–380. Imperial College Press, London (2009)Google Scholar
  2. Alberts, B.: The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)CrossRefGoogle Scholar
  3. Aloy, P., Russell, R.B.: Ten thousand interactions for the molecular biologist. Nat. Biotechnol. 22(10), 1317–1321 (2004)CrossRefGoogle Scholar
  4. Atkins, P.: Four Laws that Drive the Universe. Oxford Univeristy Press, Oxford (2007)Google Scholar
  5. Bacciagaluppi, G., Valenti, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  6. Bellomo, N., Bellouquid, A., Harrero, M.A.: From microscopic to macroscopic descriptions of multicellular systems and biological growing tissues. Comput. Math. Appl. 53, 647–663 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. Benham, C.J.: Duplex destabilization in supercoiled DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425–434 (1996a)CrossRefGoogle Scholar
  8. Benham, C.J.: Computation of DNA structural variability – a new predictor of DNA regulatory regions. Comput. Appl. Biosci. 12(5), 375–381 (1996b)Google Scholar
  9. Benham, C.J., Bi, C.: The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11(4), 519–543 (2004)CrossRefGoogle Scholar
  10. Bennett, C.H.: Thermodynamics of computation - a review. Int. J. Theor.Phys. 21(12), 905–940 (1991)CrossRefGoogle Scholar
  11. Blobel, G.: Nuclear-cytoplasmic transport, The 4th Morris Lecture, Robert Wood Johnosn Medical School, UMDNJ, Picataway, N.J, 4 Nov 2007Google Scholar
  12. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)Google Scholar
  13. Brillouin, L.: Negentropy principle of information. J. Appl. Phys. 24(9), 1152–1163 (1953)ADSMATHCrossRefGoogle Scholar
  14. Brillouin, L.: Science and Information Theory, pp. 152–156. Academic Press, New York (1956)MATHGoogle Scholar
  15. Brooks, D.R., Wiley, E.O.: Evolution as Entropy. The University of Chicago Press, Chicago (1986)Google Scholar
  16. Cahay, M.: Quantum confinement VI: Nanostructured materials and devices: Proceedings of the International Symposium, The Electrochemical Society (ECS) Pennington, NJ 08534, USA 2001Google Scholar
  17. Collier, J.: Causation is the transfer of information. In: Sankey, H. (ed.) Causation, Natural Laws and Explanation. Kluwer, Dordrecht (1999)Google Scholar
  18. Culler, J.: Ferdinand de Saussure. Cornell University Press, Ithaca (1991). Revised EditionGoogle Scholar
  19. Curley, E.: A Spinoza Reader: The Ethics and Other Works, pp. 67–70. Princeton University Press, Princeton (1994)Google Scholar
  20. Davies, P., Gregersen, N.H. (eds.): Information and the Nature of Reality: From Physics to Metaphysics. Cambridge University Press, New York (2010)Google Scholar
  21. Dellaire, G.: Nuclear compartment: Nuclear pore. (2007)
  22. Dillon, M.C.: Merleau-Ponty's Ontology. Northwestern University Press, Evanston (1997)Google Scholar
  23. Dundr, M., Misteli, T.: Functional architecture in the cell nucleus. Biochem. J. 356, 297–310 (2001)CrossRefGoogle Scholar
  24. Gilson, J.G., McPherson, R.: Quantization of Boltzmann’s Gas Constant. Downloaded from the Internet through Google on 3/18/2011. No reference was given in the document (2011)Google Scholar
  25. Green, D.E., Ji, S.: The electromechanochemical model of mitochondrial strucutre and funciton. In: Schulz, J., Cameron, B.F. (eds.) Molecular Basis of Electron Transport, pp. 1–44. Academic Press, New York (1972a)Google Scholar
  26. Green, D.E., Ji, S.: Electromechanochemical model of mitochondrial structure and function. Proc. Natl. Acad. Sci. U. S. A. 69, 726–729 (1972b)ADSCrossRefGoogle Scholar
  27. Halle, J.-P., Meisterernst, M.: Gene expression: increasing evidence for a transcriptosome. Trends Genet. 12(5), 161–163 (1996)CrossRefGoogle Scholar
  28. Hartwell, L.H., Hopfield, J.J., Liebler, S., Murray, A.W.: From molecules to modular cell biology. Nature 402(Suppl. 6761), C47–C52 (1999)CrossRefGoogle Scholar
  29. Herbert, N.: Quantum Reality: Beyond the New Physics, An Excursion into Metaphysics, p. 64. Anchor Books, Garden City (1987)Google Scholar
  30. Heylighen, F., Joslyn, C.: Cybernetics and second-order cybernetics. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science & Technology, 3rd edn, pp. 1–24. Academic Press, New York (2001)Google Scholar
  31. Ishijima, A., Kojima, H., Higuchi, H., Harada, Y., Funatsu, T., Yanagida, T.: Simultaneous measurement of chemical and mechanical reaction. Cell 70, 161–171 (1998)CrossRefGoogle Scholar
  32. Ishii, Y., Yangida, T.: Single molecule detection in life science. Single Mol. 1(1), 5–16 (2000)ADSCrossRefGoogle Scholar
  33. Ishii, Y., Yanagida, T.: How single molecule detection measures th dynamics of life. HFSP J. 1(1), 15–29 (2007)CrossRefGoogle Scholar
  34. Ji, S.: Energy and negentropy in enzymic catalysis. Ann. N. Y. Acad. Sci. 227, 419–437 (1974a)ADSCrossRefGoogle Scholar
  35. Ji, S.: A general theory of ATP synthesis and utilization. Ann. N. Y. Acad. Sci. 227, 211–226 (1974b)ADSCrossRefGoogle Scholar
  36. Ji, S.: The principles of ligand-protein interactions and their application to the mechanism of oxidative phosphorylation. In: Yagi, K. (ed.) Structure and Function of Biomembranes, pp. 25–37. Japan Scientific Societies Press, Tokyo (1979)Google Scholar
  37. Ji, S.: Watson-crick and prigoginian forms of genetic information. J. Theor. Biol. 130, 239–245 (1988)CrossRefGoogle Scholar
  38. Ji, S.: Biocybernetics: a machine theory of biology. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 1–237. Rutgers University Press, New Brunswick (1991)Google Scholar
  39. Ji, S.: Complementarism: A new dialogue between science and religion based on modern biology, In: Proceedings of the Fourth KSEA (Korean Scientists and Engineers Association in America) Northeast Regional Conference, pp. 319–328. Stevens Institute of Technology, Hoboken, N.J (1993)Google Scholar
  40. Ji, S.: Complementarism: a biology-based philosophical framework to integrate western science and eastern tao, in Psychotherapy East and West: Integration of Psychotherapies, pp. 517–548. Korean Academy of Psychotherapists, 178–23 Sungbuk-dong, Songbuk-ku, Seoul 136–020, Korea (1995)Google Scholar
  41. Ji, S.: Isomorphism between cell and human languages: molecular biological, bioinformatics and linguistic implications. Biosystems 44, 17–39 (1997a)CrossRefGoogle Scholar
  42. Ji, S.: The linguistics of DNA: words, sentences, grammar, phonetics, and semantics. Ann. N. Y. Acad. Sci. 870, 411–417 (1999b)ADSCrossRefGoogle Scholar
  43. Ji, S.: Free energy and information contents of Conformons in proteins and DNA. Biosystems 54, 107–130 (2000)CrossRefGoogle Scholar
  44. Ji, S.: Molecular information theory: solving the mysteries of DNA. In: Ciobanu, G., Rozenberg, G. (eds.) Modeling in Molecular Biology, Natural Computing Series, pp. 141–150. Springer, Berlin (2004a)CrossRefGoogle Scholar
  45. Ji, S.: First, second and third articulations in molecular Ccmputing in the cell. In: Abstracts, 2005 World DNA and Genome Day, Dalian, China, 25–29 April 2005, p. 77Google Scholar
  46. Ji, S.: Info-statistical mechanics of cell metabolism. In Abstract, 56th Statistical Mechanics Conference, Rutgers University, Piscataway, 17–19 Dec 2006, p. 6.. Available at (2006a)
  47. Ji, S.: SOWAWN machines and life. (2006b)
  48. Ji, S.: S- and H-categories of entropies. Mailing List complex- Message #8861 (2006d)Google Scholar
  49. Ji, S.: Modeling the single-molecule enzyme kinetics of cholesterol oxidase based on Planck's radiation formula and the principle of enthalpy-entropy compensation. In: Short Talk Abstracts The 100th Statistical Mechanics Conference, Rutgers University, Piscataway, N.J, 13–16 Dec (2008b)Google Scholar
  50. Ji, S.: The Cell Language Theory: Decoding RNA Waves, the Sound of Cell Langauge. Imperial College Press, London (2012) (to appear)Google Scholar
  51. Ji, S., Chaovalitwongse, A., Fefferman, N., Yoo, W., Perez-Ortin, J.E.: Mechanism-based clustering of genome-wide mRNA levels: roles of transcription and transcript-degradation rates. In: Butenko, S., Chaovalitwongse, A., Pardalos, P. (eds.) Clustering Challenges in Biological Networks, pp. 237–255. World Scientific Publishing Co, Singapore (2009a)CrossRefGoogle Scholar
  52. Ji, S., So, K.: The universal law of thermal transitions applicable to blackbody radiation, single-molecule enzymology and whole-cell metabolism. In: Abstract B1, The 102nd Statistical Mechanics Conference, Rutgers University, Piscataway, N.J, 13–15 Dec (2009d)Google Scholar
  53. Jin, T., Sasaki, A., Kinjo, M., Miyazaki, J.: A quantum dot-based ratiometric pH sensor. Chem. Commun. 46, 2408–24510 (2010)CrossRefGoogle Scholar
  54. Klir, G.J.: Developments in uncertainty-based information. Adv. Comput. 36, 255–332 (1993)CrossRefGoogle Scholar
  55. Kragh, H.: Max Planck: the reluctant revolutionary. From Physics World Dec 2000. Available at (2000)
  56. Laszlo, E.: The Connectivity Hypothesis: Foundation of an Integral Science of Quantum, Cosmos, Life, and Consciousness. State University of New York Press, Albany (2003)Google Scholar
  57. Layzer, D.: The arrow of time. Sci. Am. 233, 56–69 (1975)ADSCrossRefGoogle Scholar
  58. Leff, H., Rex, A.: Maxwell’s Demon: Entropy. Computing, Princeton University Press, Princeton, Information (1962)Google Scholar
  59. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Alfred A Knopf, New York (2006)Google Scholar
  60. Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)CrossRefGoogle Scholar
  61. Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)ADSCrossRefGoogle Scholar
  62. Mamontov, E., Psiuk-Maksymowitcz, K., Koptioug, A.: Stochastic mechanics in the context of the properties of living systems. Math. Comp. Modeling 44(7–8), 595–607 (2006)MATHCrossRefGoogle Scholar
  63. McClare, C.W.F.: Chemical machines, maxwell's demon and living organisms. J. theoret. Biol. 30, 1–34 (1971)CrossRefGoogle Scholar
  64. McKaughan, D.J.: The influence of Niels Bohr on max delbrück. Isis 96, 507–529 (2005)MathSciNetMATHCrossRefGoogle Scholar
  65. Mikula, S., Niebur, E.: The effects of input rate and synchrony on a coincidence detector - analytical solution. Neural Computat. 5(3), 539–547 (2003)CrossRefGoogle Scholar
  66. Morrison, M.A.: Understanding Quantum Physics: A User’s Manual, p. 169. Prentice Hall, Englewood (1990)Google Scholar
  67. Murdoch, D.: Niels Bohr’s Philosophy of Physics. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  68. Nave, R.: Blackbody radiation. hbase/mod6.html (2009)
  69. Norris, V., et al.: Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 81, 915–920 (1999)CrossRefGoogle Scholar
  70. Norris, V., den Blaauwen, T., Cabin-Flaman, A., Doi, R.H., Harshey, R., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileykovskaya, E., Minsky, A., Saier Jr., M., Skarstad, K.: Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71(1), 230–253 (2007a)CrossRefGoogle Scholar
  71. Norris, V., den Blaauwen, T., Doi, R.H., Harshey, R.M., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileyknovskaya, E., Minsky, A., Misevic, G., Ripoll, C., Saier Jr., M., Skarstad, K., Thellier, M.: Toward a hyperstructure taxanomy. Annu. Rev. Microbiol. 61, 309–329 (2007b)CrossRefGoogle Scholar
  72. Pais, A.: Niels Bohrs’ Times, in Physics, Philosophy, and Polity, pp. 438–447. Clarendon Press, Oxford (1991)Google Scholar
  73. Peirce, C.S.: The categories defined. In: Houser, N. (ed.) The Essential Peirce: Selected Philosophical Writings, Volume 2 (1893–1913), pp. 160–178. Indiana University Press, Bloomington (1903)Google Scholar
  74. Pierce, J.R.: Introduction to Information Theory. Second, Revised Edition. Dover Publications, New York (1980)MATHGoogle Scholar
  75. Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Kindle Edition (2006)MATHGoogle Scholar
  76. Poole, A.M., Ranganathan, R.: Knowledge-based potentials in protein design. Curr. Opin. Struct. Biol. 16, 508–513 (2006)CrossRefGoogle Scholar
  77. Prigogine, I.: From Being To Becoming: Time and complexity in Physical Sciences, pp. 19–26. W. H. Freeman and Company, San Francisco (1980)Google Scholar
  78. Prigogine, I.: Schrödinger and the riddle of life. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 239–242. Rutgers University Press, New Brunswick (1991)Google Scholar
  79. Roederer, J.G.: On the concept of information and its role in nature. Entropy 5, 3–33 (2003)ADSMATHCrossRefGoogle Scholar
  80. Roederer, J.G.: When and where did information first appear in the universe? In: Seckbach, J. (ed.) Bioinformatics. Kluwer Academic Publ, Dordrecht, The Netherlands (2004)Google Scholar
  81. Salthe, S.N.: Development and Evolution: Complexity and Change in Biology, pp. 5–10, 20–25, and 131–136.The MIT Press, Cambridge, Mass (1996) Salthe, S. N. (2009). Personal communication. Google Scholar
  82. Scruton, R.: Spinoza, p. 16. Routledge, New York (1999)Google Scholar
  83. Seife, C.: Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brain to Balck Holes. Viking, New York (2006)Google Scholar
  84. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois, Urbana (1949)MATHGoogle Scholar
  85. Simpson, G.G.: This View of Life, Harcourt. Brace & World, New York (1964)Google Scholar
  86. Smith, H.A., Welch, G.R.: Cytosociology: a field-theoretic view of cell metabolism. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 282–323. Rutgers University Press, New Brunswick (1991)Google Scholar
  87. Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardneer, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)ADSCrossRefGoogle Scholar
  88. Srere, P.A.: Complexes of sequential metabolic enzymes. Ann. Rev. Biochem. 56, 89–124 (1987)CrossRefGoogle Scholar
  89. Süel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10(1), 59–69 (2003)CrossRefGoogle Scholar
  90. Tolman, R.C.: The Principles of Statistical Mechanics, pp. 42–46. Dover Publications, New York (1979)Google Scholar
  91. Turvey, M.T., Kugler, P.N.: A comment on equating information with symbol strings. Am. J. Physiol. 246, R925–R927 (1984) (Regulatory Integrative Comp. Physiol. 15)Google Scholar
  92. Volkenstein, M.V.: Entropy and Information. Birkhäuser, Basel (2009)MATHCrossRefGoogle Scholar
  93. Watson, S.J., Akil, U.: Gene chips and arrays revealed: a primer on their power and their uses. Biol. Psychiatry 45, 533–43 (1999)CrossRefGoogle Scholar
  94. Wheeler, J.A.: Information, physics, quantum: the seaerch for links. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information, pp. 3–28. Addison- Wesley Publishing Company, Redwood City (1990)Google Scholar
  95. Wheeler, J.A.: Geons, Black Holes & Quantum Foam: A Life in Physics, pp. 340–341. W.W. Norton & Company, New York (1998)MATHGoogle Scholar
  96. Wicken, J.S.: Entropy and information: suggestions for common language. Phil. Sci. 54, 176–193 (1987)MathSciNetCrossRefGoogle Scholar
  97. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)MATHGoogle Scholar
  98. Xie, X.S., Lu, P.H.: Single-molecule enzymology. J. Biol. Chem. 274(23), 15967–15970 (1999)CrossRefGoogle Scholar
  99. Xie, X.S.: Single-molecule approach to enzymology. Single Mol. 2(4), 229–239 (2001)ADSCrossRefGoogle Scholar
  100. Zwanzig, R.: Rate processes with dynamic disorder. Acc. Chem. Res. 23, 148–152 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dept. of Pharmacol. & Toxicol. Ernest Mario School of PharmacyRutgers UniversityPiscatawayUSA

Personalised recommendations