Biology

Chapter

Abstract

As already alluded to in Preface, the American paleontologist Gaylord Simpson (1964) made a statement to the effect that Physicists study the principles that apply to all phenomena; biologists study phenomena to which all principles apply.

Keywords

Cholesterol Entropy Hydrolysis Dioxide Chlorophyll 

References

  1. Abbott, D., Davies, P.C., Pati, A.K.: Quantum Aspects of Life, pp. 349–380. Imperial College Press, London (2009)Google Scholar
  2. Alberts, B.: The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)CrossRefGoogle Scholar
  3. Aloy, P., Russell, R.B.: Ten thousand interactions for the molecular biologist. Nat. Biotechnol. 22(10), 1317–1321 (2004)CrossRefGoogle Scholar
  4. Atkins, P.: Four Laws that Drive the Universe. Oxford Univeristy Press, Oxford (2007)Google Scholar
  5. Bacciagaluppi, G., Valenti, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  6. Bellomo, N., Bellouquid, A., Harrero, M.A.: From microscopic to macroscopic descriptions of multicellular systems and biological growing tissues. Comput. Math. Appl. 53, 647–663 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. Benham, C.J.: Duplex destabilization in supercoiled DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425–434 (1996a)CrossRefGoogle Scholar
  8. Benham, C.J.: Computation of DNA structural variability – a new predictor of DNA regulatory regions. Comput. Appl. Biosci. 12(5), 375–381 (1996b)Google Scholar
  9. Benham, C.J., Bi, C.: The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11(4), 519–543 (2004)CrossRefGoogle Scholar
  10. Bennett, C.H.: Thermodynamics of computation - a review. Int. J. Theor.Phys. 21(12), 905–940 (1991)CrossRefGoogle Scholar
  11. Blobel, G.: Nuclear-cytoplasmic transport, The 4th Morris Lecture, Robert Wood Johnosn Medical School, UMDNJ, Picataway, N.J, 4 Nov 2007Google Scholar
  12. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)Google Scholar
  13. Brillouin, L.: Negentropy principle of information. J. Appl. Phys. 24(9), 1152–1163 (1953)ADSMATHCrossRefGoogle Scholar
  14. Brillouin, L.: Science and Information Theory, pp. 152–156. Academic Press, New York (1956)MATHGoogle Scholar
  15. Brooks, D.R., Wiley, E.O.: Evolution as Entropy. The University of Chicago Press, Chicago (1986)Google Scholar
  16. Cahay, M.: Quantum confinement VI: Nanostructured materials and devices: Proceedings of the International Symposium, The Electrochemical Society (ECS) Pennington, NJ 08534, USA 2001Google Scholar
  17. Collier, J.: Causation is the transfer of information. In: Sankey, H. (ed.) Causation, Natural Laws and Explanation. Kluwer, Dordrecht (1999)Google Scholar
  18. Culler, J.: Ferdinand de Saussure. Cornell University Press, Ithaca (1991). Revised EditionGoogle Scholar
  19. Curley, E.: A Spinoza Reader: The Ethics and Other Works, pp. 67–70. Princeton University Press, Princeton (1994)Google Scholar
  20. Davies, P., Gregersen, N.H. (eds.): Information and the Nature of Reality: From Physics to Metaphysics. Cambridge University Press, New York (2010)Google Scholar
  21. Dellaire, G.: Nuclear compartment: Nuclear pore. http://npd.hgu.mrc.ac.uk/compartments/nuc_pore.html (2007)
  22. Dillon, M.C.: Merleau-Ponty's Ontology. Northwestern University Press, Evanston (1997)Google Scholar
  23. Dundr, M., Misteli, T.: Functional architecture in the cell nucleus. Biochem. J. 356, 297–310 (2001)CrossRefGoogle Scholar
  24. Gilson, J.G., McPherson, R.: Quantization of Boltzmann’s Gas Constant. Downloaded from the Internet through Google on 3/18/2011. No reference was given in the document (2011)Google Scholar
  25. Green, D.E., Ji, S.: The electromechanochemical model of mitochondrial strucutre and funciton. In: Schulz, J., Cameron, B.F. (eds.) Molecular Basis of Electron Transport, pp. 1–44. Academic Press, New York (1972a)Google Scholar
  26. Green, D.E., Ji, S.: Electromechanochemical model of mitochondrial structure and function. Proc. Natl. Acad. Sci. U. S. A. 69, 726–729 (1972b)ADSCrossRefGoogle Scholar
  27. Halle, J.-P., Meisterernst, M.: Gene expression: increasing evidence for a transcriptosome. Trends Genet. 12(5), 161–163 (1996)CrossRefGoogle Scholar
  28. Hartwell, L.H., Hopfield, J.J., Liebler, S., Murray, A.W.: From molecules to modular cell biology. Nature 402(Suppl. 6761), C47–C52 (1999)CrossRefGoogle Scholar
  29. Herbert, N.: Quantum Reality: Beyond the New Physics, An Excursion into Metaphysics, p. 64. Anchor Books, Garden City (1987)Google Scholar
  30. Heylighen, F., Joslyn, C.: Cybernetics and second-order cybernetics. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science & Technology, 3rd edn, pp. 1–24. Academic Press, New York (2001)Google Scholar
  31. Ishijima, A., Kojima, H., Higuchi, H., Harada, Y., Funatsu, T., Yanagida, T.: Simultaneous measurement of chemical and mechanical reaction. Cell 70, 161–171 (1998)CrossRefGoogle Scholar
  32. Ishii, Y., Yangida, T.: Single molecule detection in life science. Single Mol. 1(1), 5–16 (2000)ADSCrossRefGoogle Scholar
  33. Ishii, Y., Yanagida, T.: How single molecule detection measures th dynamics of life. HFSP J. 1(1), 15–29 (2007)CrossRefGoogle Scholar
  34. Ji, S.: Energy and negentropy in enzymic catalysis. Ann. N. Y. Acad. Sci. 227, 419–437 (1974a)ADSCrossRefGoogle Scholar
  35. Ji, S.: A general theory of ATP synthesis and utilization. Ann. N. Y. Acad. Sci. 227, 211–226 (1974b)ADSCrossRefGoogle Scholar
  36. Ji, S.: The principles of ligand-protein interactions and their application to the mechanism of oxidative phosphorylation. In: Yagi, K. (ed.) Structure and Function of Biomembranes, pp. 25–37. Japan Scientific Societies Press, Tokyo (1979)Google Scholar
  37. Ji, S.: Watson-crick and prigoginian forms of genetic information. J. Theor. Biol. 130, 239–245 (1988)CrossRefGoogle Scholar
  38. Ji, S.: Biocybernetics: a machine theory of biology. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 1–237. Rutgers University Press, New Brunswick (1991)Google Scholar
  39. Ji, S.: Complementarism: A new dialogue between science and religion based on modern biology, In: Proceedings of the Fourth KSEA (Korean Scientists and Engineers Association in America) Northeast Regional Conference, pp. 319–328. Stevens Institute of Technology, Hoboken, N.J (1993)Google Scholar
  40. Ji, S.: Complementarism: a biology-based philosophical framework to integrate western science and eastern tao, in Psychotherapy East and West: Integration of Psychotherapies, pp. 517–548. Korean Academy of Psychotherapists, 178–23 Sungbuk-dong, Songbuk-ku, Seoul 136–020, Korea (1995)Google Scholar
  41. Ji, S.: Isomorphism between cell and human languages: molecular biological, bioinformatics and linguistic implications. Biosystems 44, 17–39 (1997a)CrossRefGoogle Scholar
  42. Ji, S.: The linguistics of DNA: words, sentences, grammar, phonetics, and semantics. Ann. N. Y. Acad. Sci. 870, 411–417 (1999b)ADSCrossRefGoogle Scholar
  43. Ji, S.: Free energy and information contents of Conformons in proteins and DNA. Biosystems 54, 107–130 (2000)CrossRefGoogle Scholar
  44. Ji, S.: Molecular information theory: solving the mysteries of DNA. In: Ciobanu, G., Rozenberg, G. (eds.) Modeling in Molecular Biology, Natural Computing Series, pp. 141–150. Springer, Berlin (2004a)CrossRefGoogle Scholar
  45. Ji, S.: First, second and third articulations in molecular Ccmputing in the cell. In: Abstracts, 2005 World DNA and Genome Day, Dalian, China, 25–29 April 2005, p. 77Google Scholar
  46. Ji, S.: Info-statistical mechanics of cell metabolism. In Abstract, 56th Statistical Mechanics Conference, Rutgers University, Piscataway, 17–19 Dec 2006, p. 6.. Available at http://www.math.rutgers.edu/events/smm/smm96_shorttlks.abs.html (2006a)
  47. Ji, S.: SOWAWN machines and life. http://necsi.org:8100/Lists/complex-science/Message/8370.html (2006b)
  48. Ji, S.: S- and H-categories of entropies. Mailing List complex- science@necsi.org Message #8861 (2006d)Google Scholar
  49. Ji, S.: Modeling the single-molecule enzyme kinetics of cholesterol oxidase based on Planck's radiation formula and the principle of enthalpy-entropy compensation. In: Short Talk Abstracts The 100th Statistical Mechanics Conference, Rutgers University, Piscataway, N.J, 13–16 Dec (2008b)Google Scholar
  50. Ji, S.: The Cell Language Theory: Decoding RNA Waves, the Sound of Cell Langauge. Imperial College Press, London (2012) (to appear)Google Scholar
  51. Ji, S., Chaovalitwongse, A., Fefferman, N., Yoo, W., Perez-Ortin, J.E.: Mechanism-based clustering of genome-wide mRNA levels: roles of transcription and transcript-degradation rates. In: Butenko, S., Chaovalitwongse, A., Pardalos, P. (eds.) Clustering Challenges in Biological Networks, pp. 237–255. World Scientific Publishing Co, Singapore (2009a)CrossRefGoogle Scholar
  52. Ji, S., So, K.: The universal law of thermal transitions applicable to blackbody radiation, single-molecule enzymology and whole-cell metabolism. In: Abstract B1, The 102nd Statistical Mechanics Conference, Rutgers University, Piscataway, N.J, 13–15 Dec (2009d)Google Scholar
  53. Jin, T., Sasaki, A., Kinjo, M., Miyazaki, J.: A quantum dot-based ratiometric pH sensor. Chem. Commun. 46, 2408–24510 (2010)CrossRefGoogle Scholar
  54. Klir, G.J.: Developments in uncertainty-based information. Adv. Comput. 36, 255–332 (1993)CrossRefGoogle Scholar
  55. Kragh, H.: Max Planck: the reluctant revolutionary. From Physics World Dec 2000. Available at http://www.physicsworldarchive.iop.org (2000)
  56. Laszlo, E.: The Connectivity Hypothesis: Foundation of an Integral Science of Quantum, Cosmos, Life, and Consciousness. State University of New York Press, Albany (2003)Google Scholar
  57. Layzer, D.: The arrow of time. Sci. Am. 233, 56–69 (1975)ADSCrossRefGoogle Scholar
  58. Leff, H., Rex, A.: Maxwell’s Demon: Entropy. Computing, Princeton University Press, Princeton, Information (1962)Google Scholar
  59. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Alfred A Knopf, New York (2006)Google Scholar
  60. Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)CrossRefGoogle Scholar
  61. Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)ADSCrossRefGoogle Scholar
  62. Mamontov, E., Psiuk-Maksymowitcz, K., Koptioug, A.: Stochastic mechanics in the context of the properties of living systems. Math. Comp. Modeling 44(7–8), 595–607 (2006)MATHCrossRefGoogle Scholar
  63. McClare, C.W.F.: Chemical machines, maxwell's demon and living organisms. J. theoret. Biol. 30, 1–34 (1971)CrossRefGoogle Scholar
  64. McKaughan, D.J.: The influence of Niels Bohr on max delbrück. Isis 96, 507–529 (2005)MathSciNetMATHCrossRefGoogle Scholar
  65. Mikula, S., Niebur, E.: The effects of input rate and synchrony on a coincidence detector - analytical solution. Neural Computat. 5(3), 539–547 (2003)CrossRefGoogle Scholar
  66. Morrison, M.A.: Understanding Quantum Physics: A User’s Manual, p. 169. Prentice Hall, Englewood (1990)Google Scholar
  67. Murdoch, D.: Niels Bohr’s Philosophy of Physics. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  68. Nave, R.: Blackbody radiation. http://hyperphysics.phys-astr.gsu.edu/ hbase/mod6.html (2009)
  69. Norris, V., et al.: Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 81, 915–920 (1999)CrossRefGoogle Scholar
  70. Norris, V., den Blaauwen, T., Cabin-Flaman, A., Doi, R.H., Harshey, R., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileykovskaya, E., Minsky, A., Saier Jr., M., Skarstad, K.: Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71(1), 230–253 (2007a)CrossRefGoogle Scholar
  71. Norris, V., den Blaauwen, T., Doi, R.H., Harshey, R.M., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileyknovskaya, E., Minsky, A., Misevic, G., Ripoll, C., Saier Jr., M., Skarstad, K., Thellier, M.: Toward a hyperstructure taxanomy. Annu. Rev. Microbiol. 61, 309–329 (2007b)CrossRefGoogle Scholar
  72. Pais, A.: Niels Bohrs’ Times, in Physics, Philosophy, and Polity, pp. 438–447. Clarendon Press, Oxford (1991)Google Scholar
  73. Peirce, C.S.: The categories defined. In: Houser, N. (ed.) The Essential Peirce: Selected Philosophical Writings, Volume 2 (1893–1913), pp. 160–178. Indiana University Press, Bloomington (1903)Google Scholar
  74. Pierce, J.R.: Introduction to Information Theory. Second, Revised Edition. Dover Publications, New York (1980)MATHGoogle Scholar
  75. Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Kindle Edition (2006)MATHGoogle Scholar
  76. Poole, A.M., Ranganathan, R.: Knowledge-based potentials in protein design. Curr. Opin. Struct. Biol. 16, 508–513 (2006)CrossRefGoogle Scholar
  77. Prigogine, I.: From Being To Becoming: Time and complexity in Physical Sciences, pp. 19–26. W. H. Freeman and Company, San Francisco (1980)Google Scholar
  78. Prigogine, I.: Schrödinger and the riddle of life. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 239–242. Rutgers University Press, New Brunswick (1991)Google Scholar
  79. Roederer, J.G.: On the concept of information and its role in nature. Entropy 5, 3–33 (2003)ADSMATHCrossRefGoogle Scholar
  80. Roederer, J.G.: When and where did information first appear in the universe? In: Seckbach, J. (ed.) Bioinformatics. Kluwer Academic Publ, Dordrecht, The Netherlands (2004)Google Scholar
  81. Salthe, S.N.: Development and Evolution: Complexity and Change in Biology, pp. 5–10, 20–25, and 131–136.The MIT Press, Cambridge, Mass (1996) Salthe, S. N. (2009). Personal communication. Google Scholar
  82. Scruton, R.: Spinoza, p. 16. Routledge, New York (1999)Google Scholar
  83. Seife, C.: Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brain to Balck Holes. Viking, New York (2006)Google Scholar
  84. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois, Urbana (1949)MATHGoogle Scholar
  85. Simpson, G.G.: This View of Life, Harcourt. Brace & World, New York (1964)Google Scholar
  86. Smith, H.A., Welch, G.R.: Cytosociology: a field-theoretic view of cell metabolism. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 282–323. Rutgers University Press, New Brunswick (1991)Google Scholar
  87. Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardneer, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)ADSCrossRefGoogle Scholar
  88. Srere, P.A.: Complexes of sequential metabolic enzymes. Ann. Rev. Biochem. 56, 89–124 (1987)CrossRefGoogle Scholar
  89. Süel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10(1), 59–69 (2003)CrossRefGoogle Scholar
  90. Tolman, R.C.: The Principles of Statistical Mechanics, pp. 42–46. Dover Publications, New York (1979)Google Scholar
  91. Turvey, M.T., Kugler, P.N.: A comment on equating information with symbol strings. Am. J. Physiol. 246, R925–R927 (1984) (Regulatory Integrative Comp. Physiol. 15)Google Scholar
  92. Volkenstein, M.V.: Entropy and Information. Birkhäuser, Basel (2009)MATHCrossRefGoogle Scholar
  93. Watson, S.J., Akil, U.: Gene chips and arrays revealed: a primer on their power and their uses. Biol. Psychiatry 45, 533–43 (1999)CrossRefGoogle Scholar
  94. Wheeler, J.A.: Information, physics, quantum: the seaerch for links. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information, pp. 3–28. Addison- Wesley Publishing Company, Redwood City (1990)Google Scholar
  95. Wheeler, J.A.: Geons, Black Holes & Quantum Foam: A Life in Physics, pp. 340–341. W.W. Norton & Company, New York (1998)MATHGoogle Scholar
  96. Wicken, J.S.: Entropy and information: suggestions for common language. Phil. Sci. 54, 176–193 (1987)MathSciNetCrossRefGoogle Scholar
  97. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)MATHGoogle Scholar
  98. Xie, X.S., Lu, P.H.: Single-molecule enzymology. J. Biol. Chem. 274(23), 15967–15970 (1999)CrossRefGoogle Scholar
  99. Xie, X.S.: Single-molecule approach to enzymology. Single Mol. 2(4), 229–239 (2001)ADSCrossRefGoogle Scholar
  100. Zwanzig, R.: Rate processes with dynamic disorder. Acc. Chem. Res. 23, 148–152 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dept. of Pharmacol. & Toxicol. Ernest Mario School of PharmacyRutgers UniversityPiscatawayUSA

Personalised recommendations