Skip to main content

The Structure of Intrinsically Disordered Peptides Implicated in Amyloid Diseases: Insights from Fully Atomistic Simulations

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Protein aggregation involves the self-assembly of proteins into large β-sheet-rich complexes. This process can be the result of aberrant protein folding and lead to “amyloidosis,” a condition characterized by deposits of protein aggregates known as amyloids on various organs of the body [1]. Amyloid-related diseases include, among others, Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease, and type II diabetes [2, 3, 4]. In other instances, however, protein aggregation is not a pathological process, but rather a functional one, with aggregates serving as structural scaffolds in a number of organisms [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  Google Scholar 

  2. Selkoe, D.J.: Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell. Biol. 6, 1054–1061 (2004)

    Article  Google Scholar 

  3. Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)

    Article  ADS  Google Scholar 

  4. Harper, J.D., Lansbury, P.T.: Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997)

    Article  Google Scholar 

  5. Fowler, D.M., Koulov, A.V., Balch, W.E., Kelly, J.W.: Functional amyloid – from bacteria to humans. Trends Biochem. Sci. 32(5), 217–224 (2007)

    Article  Google Scholar 

  6. Tycko, R.: Molecular structure of amyloid fibrils: insights from solid-state NMR. Q. Rev. Biophys. 39(1), 1–55 (2006)

    Article  Google Scholar 

  7. Green, J., Goldsbury, C., Min, T., Sunderji, S., Frey, P., Kistler, J., Cooper, G., Aebi, U.: Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J. Mol. Biol. 326(4), 1147–1156 (2003)

    Article  Google Scholar 

  8. Furumoto, S., Okamura, N., Iwata, R., Yanai, K., Arai, H., Kudo, Y.: Recent advances in the development of amyloid imaging agents. Curr. Top.Med.Chem. 7(18), 1773–1789 (2007)

    Article  Google Scholar 

  9. Shiraham, T., Cohen A.S.: High-resolution electron microscopic analysis of amyloid fibril. J. Cell Biol. 33(3), 679–708 (1967)

    Article  Google Scholar 

  10. Uversky, V.N.: What does it mean to be natively unfolded? Eur. J. Biochem. 269(1), 2–12 (2002)

    Article  Google Scholar 

  11. Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, Z., Uversky, V.N., Dunker, A.K.: Intrinsic disorder and functional proteomics. Biophys. J. 92(5), 1439–1456 (2007)

    Article  ADS  Google Scholar 

  12. Salmon, L., Nodet, G., Ozenne, V., Yin, G.W., Jensen, M.R., Zweckstetter, M., Blackledge, M.: NMR characterization of long-range order in intrinsically disordered proteins. J. Am. Chem. Soc. 132(24), 8407–8418 (2010)

    Article  Google Scholar 

  13. Soto, C.: Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4(1), 49–60 (2003)

    Article  MathSciNet  Google Scholar 

  14. Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1(4), 326–331 (2009)

    Article  Google Scholar 

  15. Haass, C., Selkoe, D.J.: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid Aβ-peptide. Nat.Rev. Mol. Cell. Biol. 8(2), 101–112 (2007)

    Article  Google Scholar 

  16. Cheon, M., Chang, I., Mohanty, S., Luheshi, L.M., Dobson, C.M., Vendruscolo, M., Favrin, G.: Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comp. Biol. 3(9), 1727–1738 (2007)

    Article  Google Scholar 

  17. Smith, A.M., Jahn, T.R., Ashcroft, A.E., Radford, S.E. Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J. Mol. Biol. 364(1), 9–19 (2006)

    Article  Google Scholar 

  18. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabel, C.G.: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618), 486–489 (2003)

    Article  ADS  Google Scholar 

  19. Dahlgren, K.N., Manelli, A.M., Stine, W.B., Baker, L.K., Krafft, G.A., LaDu, M.J.: Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277(35), 32046–32053 (2002)

    Article  Google Scholar 

  20. Roychaudhuri, R., Yang, M., Hoshi, M.M., Teplow, D.B.: Amyloid beta-protein assembly and Alzheimer disease. J. Biol. Chem. 284(8), 4749–4753 (2009)

    Article  Google Scholar 

  21. Westermark, P., Wernstedt, C., Obrien, T.D., Hayden, D.W., Johnson, K.H.: Islet amyloid in type-2 human diabetes-mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol. 127(3), 414–417 (1987)

    Google Scholar 

  22. Hoppener, J.W.M., Lips, C.J.M.: Role of islet amyloid in type 2 diabetes mellitus. Int. J. Biochem. Cell Biol. 38(5–6), 726–736 (2006)

    Article  Google Scholar 

  23. Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  24. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314(1–2), 141–151 (1999)

    Article  ADS  Google Scholar 

  25. Bellesia, G., Lampoudi, S., Shea, J.E.: Computational methods in nanostructure design: replica exchange simulations of self-assembling peptides. In: Gazit, E., Nussinov, R. (eds.) Nanostructure Design: Methods and Protocols, vol. 474, Methods in Molecular Biology, pp. 133–152. Humana Press, Totowa, NJ (2008)

    Google Scholar 

  26. Nymeyer, H., Gnanakaran, S., Garcia, A.E.: Atomic simulations of protein folding, using the replica exchange algorithm. Methods enzymol. 383, 119–149 (2004)

    Article  Google Scholar 

  27. Penev, E.S., Lampoudi, S., Shea, J.E.: TiREX: replica-exchange molecular dynamics using TINKER. Comput. Phys. Commun. 180(10), 2013–2019 (2009)

    Article  ADS  Google Scholar 

  28. Daura, X., van Gunsteren, W.F., Mark, A.E.: Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations. Proteins: Struct. Funct. Genet. 34(3), 269–280 (1999)

    Article  Google Scholar 

  29. Straub, J.E., Thirumalai, D.: Principles governing oligomer formation in amyloidogenic peptides. Curr. Opin. Struct. Biol. 20(2), 187–195 (2010)

    Article  Google Scholar 

  30. Straub, J.E., Thirumalai, D.: Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annu. Rev. Phys. Chem. 62, 437–463 (2011)

    Article  ADS  Google Scholar 

  31. Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., Teplow, D.B.: Amyloid β protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U.S.A. 100(1), 330–335 (2003)

    Article  ADS  Google Scholar 

  32. Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.E., Bitan, G., Teplow, D.B., Bowers, M.T.: Amyloid β-protein: monomer structure and early aggregation states of Aβ42 and its Pro19 alloform. J. Am. Chem. Soc. 127(7), 2075–2084 (2005)

    Article  Google Scholar 

  33. Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Doeli, H., Schubert, D., Riek, R.: 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005)

    Article  ADS  Google Scholar 

  34. Sgourakis, N.G., Yan, Y.L., McCallum, S.A., Wang, C.Y., Garcia, A.E.: The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J. Mol. Biol. 368(5), 1448–1457 (2007)

    Article  Google Scholar 

  35. Sgourakis, N.G., Merced-Serrano, M., Boutsidis, C., Drineas, P., Du, Z.M., Wang, C.Y., Garcia, A.E.: Atomic-level characterization of the ensemble of the Aβ(1–42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J. Mol. Biol. 405(2), 570–583 (2011)

    Article  Google Scholar 

  36. Zhuang, W., Sgourakis, N.G., Li, Z.Y., Garcia, A.E., Mukamel, S.: Discriminating early stage Aβ42 monomer structures using chirality-induced 2DIR spectroscopy in a simulation study. Proc. Natl. Acad. Sci. U. S. A. 107(36), 15687–15692 (2010)

    Article  ADS  Google Scholar 

  37. Wu, C., Murray, M.M., Bernstein, S.L., Condron, M.M., Bitan, G., Shea J.E., Bowers, M.T.: The structure of Aβ42 C-terminal fragments probed by a combined experimental and theoretical study. J. Mol. Biol. 387(2), 492–501 (2009)

    Article  Google Scholar 

  38. Fradinger, E.A., Monien, B.H., Urbanc, B., Lomakin, A., Tan, M., Li, H., Spring, S.M., Condron, M.M., Cruz, L., Xie, C.W., Benedek, G.B., Bitan, G.: C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity. Proc. Natl. Acad. Sci. U. S. A. 105(37), 14175–14180 (2008)

    Article  ADS  Google Scholar 

  39. Van Nostrand, W.E., Melchor, J.P., Cho, H.S., Greenberg, S.M., Rebeck, G.W.: Pathogenic effects of D23N Iowa mutant amyloid β-protein. J. Biol. Chem. 276(35), 32860–32866 (2001)

    Article  Google Scholar 

  40. Nilsberth, C., Westlind-Danielsson, A., Eckman, C.B., Condron, M.M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D.B., Younkin, S.G., Naeslund, J., Lannfelt, L.: The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4(9), 887–893 (2001)

    Article  Google Scholar 

  41. Melchor, J.P., McVoy, L., Van Nostrand, W.E.: Charge alterations of E22 enhance the pathogenic properties of the amyloid β-protein. J. Neurochem. 74(5), 2209–2212 (2000)

    Article  Google Scholar 

  42. Lashuel, H.A.: Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol. 332, 795–808 (2003)

    Article  Google Scholar 

  43. Lazo, N.D., Grant, M.A., Condron, M.C., Rigby, A.C., Teplow, D.B.: On the nucleation of amyloid β-protein monomer folding. Protein Sci. 14(6), 1581–1596 (2005)

    Article  Google Scholar 

  44. Fawzi, N.L., Phillips, A.H., Ruscio, J.Z., Doucleff, M., Wemmer, D.E., Head-Gordon, T.: Structure and dynamics of the Aβ21–30 peptide from the interplay of NMR experiments and molecular simulations. J. Am. Chem. Soc. 130, 6145–6158 (2008)

    Article  Google Scholar 

  45. Murray, M.M., Krone, M.G., Bernstein, S.L., Baumketner, A., Condron, M.M., Lazo, N.D., Teplow, D.B., Wyttenbach, T., Shea, J.E., Bowers, M.T.: Amyloid β-protein: experiment and theory on the 21–30 fragment. J. Phys. Chem. B 113(17), 6041–6046 (2009)

    Article  Google Scholar 

  46. Baumketner, A., Bernstein, S.L., Wyttenbach, T., Lazo, N.D., Teplow, D.B., Bowers, M.T., Shea, J.E.: Structure of the 21–30 fragment of amyloid β-protein. Protein Sci. 15(6), 1239–1247 (2006)

    Article  Google Scholar 

  47. Borreguero, J.M., Urbanc, B., Lazo, N.D., Buldyrev, S.V., Teplow, D.B., Stanley, H.E.: Folding events in the 21–30 region of amyloid β-protein Aβ studied in silico. Proc. Natl. Acad. Sci. U. S. A. 102(17), 6015–6020 (2005)

    Article  ADS  Google Scholar 

  48. Cruz, L., Urbanc, B., Borreguero, J.M., Lazo, N.D., Teplow, D.B., Stanley, H.E.: Solvent and mutation effects on the nucleation of amyloid β-protein folding. Proc. Natl. Acad. Sci. U. S. A. 102(51), 18258–18263 (2005)

    Article  ADS  Google Scholar 

  49. Chen, J.W., Romero, P., Uversky, V.N., Dunker, A.K.: Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. J. Proteome Res. 5(4), 879–887 (2006)

    Google Scholar 

  50. Tarus, B., Straub, J.E., Thirumalai, D.: Structures and free-energy landscapes of the wild type and mutants of the Aβ(21–30) peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. J. Mol. Biol. 379(4), 815–829 (2008)

    Article  Google Scholar 

  51. Reddy, G., Straub, J.E., Thirumalai, D.: Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Aβ peptides with implications for rates of fibril formation. J. Phys. Chem. B 113(4), 1162–1172 (2009)

    Article  Google Scholar 

  52. Tarus, B., Straub, J.E., Thirumalai, D.: Dynamics of Asp23-Lys28 salt-bridge formation in Aβ10–35 monomers. J. Am. Chem. Soc. 128(50), 16159–16168 (2006)

    Article  Google Scholar 

  53. Melquiond, A., Xiao, D., Mousseau, N., Derreumaux, P.: Role of the region 23–28 in Aβ fibril formation: insights from simulations of the monomers and dimers of Alzheimer’s peptides Aβ40 and Aβ42. Curr. Alzheimer Res. 5, 244–250 (2008)

    Article  Google Scholar 

  54. Kamiya, N., Mitomo, D., Shea, J.E., Higo, J.: Folding of the 25 residue Aβ(12–36) peptide in TFE/water: temperature-dependent transition from a funneled free-energy landscape to a rugged one. J. Phys. Chem. B 111(19), 5351–5356 (2007)

    Article  Google Scholar 

  55. Baumketner, A., Shea, J.E.: The structure of the Alzheimer amyloid \(\beta 10\mbox{ \textendash }35\) peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J. Mol. Biol. 366(1), 275–285 (2007)

    Article  Google Scholar 

  56. Sciarretta, K.L., Gordon, D.J., Petkova, A.T., Tycko, R., Meredith, S.C.: Aβ40-Lactam(D23/K28) models a conformation highly favorable for nucleation of amyloid. Biochemistry (Mosc) 44(16), 6003–6014 (2005)

    Google Scholar 

  57. Krone, M.G., Baumketner, A., Bernstein, S.L., Wyttenbach, T., Lazo, N.D., Teplow, D.B., Bowers, M.T., Shea, J.E.: Effects of familial Alzheimer’s disease mutations on the folding nucleation of the amyloid β-protein. J. Mol. Biol. 381(1), 221–228 (2008)

    Article  Google Scholar 

  58. Baumketner, A., Krone, M.G., Shea, J.E.: Role of the familial Dutch mutation E22Q in the folding and aggregation of the 15–28 fragment of the Alzheimer amyloid-β protein. Proc. Natl. Acad. Sci. U. S. A. 105(16), 6027–6032 (2008)

    Article  ADS  Google Scholar 

  59. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A., Picone, D.: Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment – similarity with a virus fusion domain. Eur. J. Biochem. 269(22), 5642–5648 (2002)

    Article  Google Scholar 

  60. Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N.A.J., Bonvin, A., Guerrini, R., Tancredi, T., Temussi, P.A., Picone, D.: The alpha-to-beta conformational transition of Alzheimer’s Aβ(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem 7(2), 257–267 (2006)

    Article  Google Scholar 

  61. Yang, C., Zhu, X.L., Li, J.Y., Chen, K.: Molecular dynamics simulation study on conformational behavior of Aβ(1–40) and Aβ(1–42) in water and methanol. J. Mol. Struc-Theochem. 907(1–3), 51–56 (2009)

    Article  Google Scholar 

  62. Yang, C., Li, J.Y., Li, Y., Zhu, X.L.: The effect of solvents on the conformations of Amyloid β-peptide (1–42) studied by molecular dynamics simulation. J. Mol. Struc-Theochem. 895(1–3), 1–8 (2009)

    Article  Google Scholar 

  63. Jalili, S., Akhavan, M.: A molecular dynamics simulation study of conformational changes and solvation of Aβ peptide in trifluoroethanol and water. J. Theor. Comput. Chem. 8(2), 215–231 (2009)

    Article  Google Scholar 

  64. Matveyenko, A.V., Butler, P.C.: Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 47(3), 225–233 (2006)

    Google Scholar 

  65. Dupuis, N.F., Wu, C., Shea, J.E., Bowers, M.T.: Human islet amyloid polypeptide monomers form ordered β-hairpins: a possible direct amyloidogenic precursor. J. Am. Chem. Soc. 131(51), 18283–18292 (2009)

    Article  Google Scholar 

  66. Reddy, A.S., Wang, L., Lin, Y.S., Ling, Y., Chopra, M., Zanni, M.T., Skinner, J.L., De Pablo, J.J.: Solution structures of rat amylin peptide: simulation, theory, and experiment. Biophys. J. 98(3), 443–451 (2010)

    Article  Google Scholar 

  67. Reddy, A.S., Wang, L., Singh, S., Ling, Y., Buchanan, L., Zanni, M.T., Skinner, J.L., De Pablo, J.J.: Stable and metastable states of human amylin in solution. Biophys. J. 99(7), 2208–2216 (2010)

    Article  ADS  Google Scholar 

  68. Williamson, J.A., Miranker, A.D.: Direct detection of transient β-helical states in islet amyloid polypeptide. Protein Sci. 16(1), 110–117 (2007)

    Article  Google Scholar 

  69. Yonemoto, I.T., Kroon, G.J.A., Dyson, H.J., Balch, W.E., Kelly, J.W.: Amylin proprotein processing generates progressively more amyloidogenic peptides that initially sample the helical state. Biochemistry (Mosc) 47(37), 9900–9910 (2008)

    Google Scholar 

  70. Munoz, V., Serrano, L.: Development of the multiple sequence approximation within the AGADIR model of β-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41(5), 495–509 (1997)

    Article  Google Scholar 

  71. Mishra, R., Geyer, M., Winter, R.: NMR spectroscopic investigation of early events in IAPP amyloid fibril formation. ChemBioChem 10(11), 1769–1772 (2009)

    Article  Google Scholar 

  72. Shim, S.H., Gupta, R., Ling, Y.L., Strasfeld, D.B., Raleigh, D.P., Zanni, M.T.: Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc. Natl. Acad. Sci. U. S. A. 106(16), 6614–6619 (2009)

    Article  ADS  Google Scholar 

  73. Kayed, R., Bernhagen, J., Greenfield, N., Sweimeh, K., Brunner, H., Voelter, W., Kapurniotu, A.: Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol. 287(4), 781–796 (1999)

    Article  Google Scholar 

  74. Davis, C.H., Berkowitz, M.L.: Structure of the amyloid-β (1–42) monomer absorbed to model phospholipid bilayers: a molecular dynamics study. J. Phys. Chem. B 113(43), 14480–14486 (2009)

    Article  Google Scholar 

  75. Davis, C.H., Berkowitz, M.L.: A molecular dynamics study of the early stages of amyloid-β(1–42) oligomerization: the role of lipid membranes. Proteins: Struct. Funct. Bioinf. 78(11), 2533–2545 (2010)

    Google Scholar 

  76. Strodel, B., Lee, J.W.L., Whittleston, C.S., Wales, D.J.: Transmembrane structures for Alzheimer’s Aβ(1–42) oligomers. J. Am. Chem. Soc. 132(38), 13300–13312 (2010)

    Article  Google Scholar 

  77. Lemkul, J.A., Bevan, D.R.: A comparative molecular dynamics analysis of the amyloid β-peptide in a lipid bilayer. Arch. Biochem. Biophys. 470(1), 54–63 (2008)

    Article  Google Scholar 

  78. Lemkul, J.A., Bevan, D.R.: Perturbation of membranes by the amyloid β-peptide – a molecular dynamics study. FEBS J. 276(11), 3060–3075 (2009)

    Article  Google Scholar 

  79. Miyashita, N., Straub, J.E., Thirumalai, D.: Structures of β-amyloid peptide 1–40, 1–42, and 1–55-the 672–726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. J. Am. Chem. Soc. 131(49), 17843–17852 (2009)

    Article  Google Scholar 

  80. Miyashita, N., Straub, J.E., Thirumalai, D., Sugita, Y.: Transmembrane structures of amyloid precursor protein dimer predicted by replica-exchange molecular dynamics simulations. J. Am. Chem. Soc. 131(10), 3438–3439 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the David and Lucile Packard Foundation, the NSF (MCB 0642086), and the NIH (AG027818). The computing time was provided by the Lonestar and Ranger clusters in the Texas Advanced Computing Center (LRAC MCA 05S027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan-Emma Shea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, C., Shea, JE. (2012). The Structure of Intrinsically Disordered Peptides Implicated in Amyloid Diseases: Insights from Fully Atomistic Simulations. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics