Skip to main content

Multiscale Modeling of Virus Structure, Assembly, and Dynamics

  • Chapter
  • First Online:
Computational Modeling of Biological Systems

Abstract

Viruses are traditionally considered as infectious agents that attack cells and cause illnesses like AIDS, Influenza, Hepatitis, etc. However, recent advances have illustrated the potential for viruses to play positive roles for human health, instead of causing disease [1, 2]. For example, viruses can be employed for a variety of biomedical and biotechnological applications, including gene therapy[3], drug delivery[4], tumor targeting[5], and medical imaging[6]. Therefore, it is important to understand quantitatively how viruses operate such that they can be engineered in a predictive manner for beneficial roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uchida, M., Klem, M.T., Allen, M., Suci, P., Flenniken, M., Gillitzer, E., Varpness, Z., Liepold, L.O., Young, M., Douglas, T.: Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19(8), 1025–1042 (2007)

    Article  Google Scholar 

  2. Maham, A., Tang, Z., Wu, H., Wang, J., Lin, Y.: Protein-based nanomedicine platforms for drug delivery. Small 5(15), 1706–1721 (2009)

    Article  Google Scholar 

  3. Miller, A.D.: Human gene therapy comes of age. Nature 357(6378), 455–460 (1992)

    Article  ADS  Google Scholar 

  4. Douglas, T., Young, M.: Host-guest encapsulation of materials by assembled virus protein cages. Nature 393(6681), 152–155 (1998)

    Article  ADS  Google Scholar 

  5. Destito, G., Yeh, R., Rae, C.S., Finn, M.G., Manchester, M.: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 14(10), 1152–1162 (2007)

    Article  Google Scholar 

  6. Gupta, S.S., Raja, K.S., Kaltgrad, E., Strable, E., Finn, M.G.: Virus-glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem. Commun. (Camb.) (34), 4315–4317 (2005)

    Google Scholar 

  7. Smith, D.E., Tans, S.J., Smith, S.B., Grimes, S., Anderson, D.L., Bustamante, C.: The bacteriophage straight phi29 portal motor can package dna against a large internal force. Nature 413(6857), 748–752 (2001)

    Article  ADS  Google Scholar 

  8. Ivanovska, I., Wuite, G., Jnsson, B., Evilevitch, A.: Internal dna pressure modifies stability of wt phage. Proc. Natl. Acad. Sci. USA 104(23), 9603–9608 (2007)

    Article  ADS  Google Scholar 

  9. Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nature Phys. 6(10), 733–743 (2010)

    Article  ADS  Google Scholar 

  10. Bancroft, J.B., Hills, G.J., Markham, R.: A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology 31(2), 354–379 (1967)

    Google Scholar 

  11. Rose, R.C., Bonnez, W., Reichman, R.C., Garcea, R.L.: Expression of human papillomavirus type l1 (HPV-l1) protein in insect cells: in vivo and in vitro assembly of viruslike particles. J. Virol. 67(4), 1936–1944 (1993)

    Google Scholar 

  12. Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W., Steven, A.C.: Proteolytic and conformational control of virus capsid maturation: the bacteriophage hk97 system. J. Mol. Biol. 253(1), 86–99 (1995)

    Article  Google Scholar 

  13. Lata, R., Conway, J.F., Cheng, N., Duda, R.L., Hendrix, R.W., Wikoff, W.R., Johnson, J.E., Tsuruta, H., Steven, A.C.: Maturation dynamics of a viral capsid: visualization of transitional intermediate states. Cell 100(2), 253–263 (2000)

    Article  Google Scholar 

  14. Adolph, K.W., Butler, P.J.: Studies on the assembly of a spherical plant virus. I. States of aggregation of the isolated protein. J. Mol. Biol. 88(2), 327–41 (1974)

    Google Scholar 

  15. Rossmann, M.G.: Constraints on the assembly of spherical virus particles. Virology 134(1), 1–11 (1984)

    Article  Google Scholar 

  16. Ceres, P., Zlotnick, A.: Weak protein–protein interactions are sufficient to drive assembly of hepatitis b virus capsids. Biochemistry 41, 11525–11531 (2002)

    Article  Google Scholar 

  17. Johnson, J.M., Willits, D.A., Young, M.J., Zlotnick, A.: Interaction with capsid protein alters rna structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus. J. Mol. Biol. 335(2), 455–64 (2004)

    Article  Google Scholar 

  18. Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75, 2626–2636 (1998)

    Article  Google Scholar 

  19. Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J., Endres, D.: A theoretical model successfully identifies features of hepatitis b virus capsid assembly. Biochemistry 38(44), 14644–14652 (1999)

    Article  Google Scholar 

  20. Bruinsma, R.F., Gelbart, W.M., Reguera, D., Rudnick, J., Zandi, R.: Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90(24), 248101 (2003)

    Article  ADS  Google Scholar 

  21. Arkhipov, A., Freddolino, P.L., Schulten, K.: Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14(12), 1767–1777 (2006)

    Article  Google Scholar 

  22. Zink, M., Grubmller, H.: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 96(4), 1350–1363 (2009)

    Article  ADS  Google Scholar 

  23. Caspar, D.L.D.: Structure of bushy stunt virus. Nature 177(4506), 476–477 (1956)

    Article  ADS  Google Scholar 

  24. Crick, F.H., Watson, J.D.: Structure of small viruses. Nature 177(4506), 473–475 (1956)

    Article  ADS  Google Scholar 

  25. Horne, R.W., Wildy, P.: Symmetry in virus architecture. Virology 15, 348–373 (1961)

    Google Scholar 

  26. Caspar, D.L., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962)

    Article  Google Scholar 

  27. Schwartz, R.S., Garcea, R.L., Berger, B.: ‘local rules’ theory applied to polyomavirus polymorphic capsid assemblies. Virology 268(2), 461–470 (2000)

    Article  Google Scholar 

  28. Rapaport, D.C.: Self-assembly of polyhedral shells: a molecular dynamics study. Phys. Rev. E 70(5), 1539–1555 (2004)

    Article  Google Scholar 

  29. Endres, D., Miyahara, M., Moisant, P., Zlotnick, A.: A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Prot. Sci. 14, 1518–1525 (2005)

    Article  Google Scholar 

  30. Keef, T., Taormina, A., Twarock, R.: Assembly models for papovaviridae based on tiling theory. Phys. Biol. 2(3), 175–188 (2005)

    Article  ADS  Google Scholar 

  31. Keef, T., Micheletti, C., Twarock, R.: Master equation approach to the assembly of viral capsids. J. Theor. Biol. 242(3), 713–721 (2006)

    Article  MathSciNet  Google Scholar 

  32. Hagan, M.F., Chandler, D.: Dynamic pathways for viral capsid assembly. Biophys. J. 91, 42–54 (2006)

    Article  ADS  Google Scholar 

  33. Nguyen, H.D., Reddy, V.S., Brooks III, C.L. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett. 7(2), 338–344 (2007)

    Article  ADS  Google Scholar 

  34. Workum, K.V., Douglas, J.F.: Symmetry, equivalence, and molecular self-assembly. Phys. Rev. E 73, 031502 (2006)

    Article  ADS  Google Scholar 

  35. Chen, T., Zhang, Z., Glotzer, S.C.: A precise packing sequence for self-assembled convex structures. Proc. Natl. Acad. Sci. USA 104(3), 717–722 (2007)

    Article  ADS  Google Scholar 

  36. Mannige, R.V., Brooks III, C.L.: Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling. Proc. Natl. Acad. Sci. USA 106(21), 8531–8536 (2009)

    Article  ADS  Google Scholar 

  37. Mannige, R.V., Brooks III, C.L.: Periodic table of virus capsids: implications for natural selection and design. PLoS One 5(3), e9423 (2010)

    Article  ADS  Google Scholar 

  38. Twarock, R.: A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226(4), 477–482 (2004)

    Article  MathSciNet  Google Scholar 

  39. Twarock, R.: Mathematical virology: a novel approach to the structure and assembly of viruses. Phil. Trans. R. Soc. A 364, 3357–3373 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Mannige, R.V., Brooks III, C.L.: Tilable nature of virus capsids and the role of topological constraints in natural capsid design. Phys. Rev. E 77(5), 051902 (2008)

    Article  ADS  Google Scholar 

  41. Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910–051919 (2003)

    Article  ADS  Google Scholar 

  42. Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral shells. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72(5 Pt 1), 051923 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. Zandi, R., Reguera, D.: Mechanical properties of viral capsids. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72, 021917 (2005)

    Google Scholar 

  44. Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101(44), 15556–15560 (2004)

    Article  ADS  Google Scholar 

  45. Bamford, D.H., Grimes, J.M., Stuart, D.I.: What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15(6), 655–663 (2005)

    Article  Google Scholar 

  46. Johnson, J.E., Speir, J.A.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269(5), 665–75 (1997)

    Article  Google Scholar 

  47. Dokland, T., McKenna, R., Ilag, L.L., Bowman, B.R., Incardona, N.L., Fane, B.A., Rossmann, M.G.: Structure of a viral procapsid with molecular scaffolding. Nature 389(6648), 308–313 (1997)

    Article  ADS  Google Scholar 

  48. Douglas, T., Young, M.: Viruses: making friends with old foes. Science 312(5775), 873–875 (2006)

    Article  ADS  Google Scholar 

  49. Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Barr, E., Alvarez, F.B., Chiacchierini, L.M., Jansen, K.U.: A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347(21), 1645–1651 (2002)

    Article  Google Scholar 

  50. Shank-Retzlaff, M., Wang, F., Morley, T., Anderson, C., Hamm, M., Brown, M., Rowland, K., Pancari, G., Zorman, J., Lowe, R., Schultz, L., Teyral, J., Capen, R., Oswald, C.B., Wang, Y., Washabaugh, M., Jansen, K., Sitrin, R.: Correlation between mouse potency and in vitro relative potency for human papillomavirus type 16 virus-like particles and gardasil vaccine samples. Hum. Vaccin. 1(5), 191–7 (2005)

    Article  Google Scholar 

  51. Shi, L., Sings, H.L., Bryan, J.T., Wang, B., Wang, Y., Mach, H., Kosinski, M., Washabaugh, M.W., Sitrin, R., Barr, E.: Gardasil: prophylactic human papillomavirus vaccine development–from bench top to bed-side. Clin. Pharmacol. Ther. 81(2), 259–64 (2007)

    Article  Google Scholar 

  52. Wales, D.J.: Closed-shell structures and the building game. Chem. Phys. Lett. 141, 478–484 (1987)

    Article  ADS  Google Scholar 

  53. Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. USA. 91, 7732–7736 (1994)

    Article  ADS  MATH  Google Scholar 

  54. Zlotnick, A.: To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J. Mol. Biol. 241(1), 59–67 (1994)

    Google Scholar 

  55. Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83, 1217–1230 (2002)

    Article  ADS  Google Scholar 

  56. Reddy, V.S., Giesing, H.A., Morton, R.T., Kumar, A., Post, C.B., Brooks III, C.L., Johnson, J.E.: Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys. J. 74(1), 546–558 (1998)

    Article  ADS  Google Scholar 

  57. Shepherd, C.M., Borelli, I.A., Lander, G., Natarajan, P., Siddavanahalli, V., Bajaj, C., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: Viperdb: a relational database for structural virology. Nucleic Acids Res. 34, D386–D389. (2006)

    Article  Google Scholar 

  58. Zlotnick, A., Aldrich, R., Johnson, J.M., Ceres, P., Young, M.J.: Mechanism of capsid assembly for an icosahedral plant virus. Virology 277, 450–456 (2000)

    Article  Google Scholar 

  59. Casini, G.L., Graham, D., Heine, D., Garcea, R.L., Wu, D.L.: In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325, 320–327 (2004)

    Article  Google Scholar 

  60. Zhang, T., Schwartz, R.: Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics. Biophys. J. 90, 57–64 (2006)

    Article  ADS  Google Scholar 

  61. Hicks, S.D., Henley, C.L.: Irreversible growth model for virus capsid assembly. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 74(3 Pt 1), 031912 (2006)

    Article  ADS  Google Scholar 

  62. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)

    MathSciNet  ADS  Google Scholar 

  63. Rapaport, D.C.: Molecular dynamics simulation of polymer chains with excluded volume. J. Phys. A 11, L213–L217 (1978)

    Article  ADS  Google Scholar 

  64. Bellemans, A., Orban, J., Belle, D.V.: Molecular dynamics of rigid and non-rigid necklaces of hard discs. Mol. Phys. 39, 781–782 (1980)

    Article  ADS  Google Scholar 

  65. Nguyen, H.D., Reddy, V.S., Brooks III, C.L. Invariant polymorphism in virus capsid assembly. J. Am. Chem. Soc. 131(7), 2606–14 (2009)

    Article  Google Scholar 

  66. Sorger, P.K., Stockley, P.G., Harrison, S.C.: Structure and assembly of turnip crinkle virus. ii. mechanism of reassembly in vitro. J. Mol. Biol. 191(4), 639–658 (1986)

    Google Scholar 

  67. Earnshaw, W., King, J.: Structure of phage p22 coat protein aggregates formed in the absence of the scaffolding protein. J. Mol. Biol. 126, 721–747 (1978)

    Article  Google Scholar 

  68. Bancroft, J.B., Bracker, C.E., Wagner, G.W.: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. Virology 38(2), 324–35 (1969)

    Article  Google Scholar 

  69. Salunke, D.M., Caspar, D.L., Garcea, R.L.: Polymorphism in the assembly of polyomavirus capsid protein vp1. Biophys. J. 56(5), 887–900 (1989)

    Article  Google Scholar 

  70. Kanesashi, S.N., Ishizu, K., Kawano, M.A., Han, S.I., Tomita, S., Watanabe, H., Kataoka, K., Handa, H.: Simian virus 40 vp1 capsid protein forms polymorphic assemblies in vitro. J. Gen. Virol. 84(Pt 7), 1899–905 (2003)

    Article  Google Scholar 

  71. Zhao, Q., Guo, H.H., Wang, Y., Washabaugh, M.W., Sitrin, R.D.: Visualization of discrete l1 oligomers in human papillomavirus 16 virus-like particles by gel electrophoresis with coomassie staining. J. Virol. Methods 127(2), 133–40 (2005)

    Article  Google Scholar 

  72. Fu, C.Y., Morais, M.C., Battisti, A.J., Rossmann, M.G., Jr. Prevelige, P.E.: Molecular dissection of o29 scaffolding protein function in an in vitro assembly system. J. Mol. Biol. 366(4), 1161–1173 (2007)

    Article  Google Scholar 

  73. Dong, X.F., Natarajan, P., Tihova, M., Johnson, J.E., Schneemann, A.: Particle polymorphism caused by deletion of a peptide molecular switch in a auasiequivalent icosahedral virus. J. Virol. 72(7), 6024–6033 (1998)

    Google Scholar 

  74. Cusack, S., Oostergetel, G.T., Krijgsman, P.C., Mellema, J.E.: Structure of the top a-t component of alfalfa mosaic virus. A non-icosahedral virion. J. Mol. Biol. 171(2), 139–55 (1983)

    Google Scholar 

  75. Nguyen, H.D., Brooks III, C.L.: Generalized structural polymorphism in self-assembled viral particles. Nano Lett. 8, 4574–81 (2008)

    Article  ADS  Google Scholar 

  76. Xie, Z., Hendrix, R.W.: Assembly in vitro of bacteriophage hk97 proheads. J. Mol. Biol. 253(1), 74–85 (1995)

    Article  Google Scholar 

  77. Duda, R.L., Hempel, J., Michel, H., Shabanowitz, J., Hunt, D., Hendrix, R.W.: Structural transitions during bacteriophage hk97 head assembly. J. Mol. Biol. 247(4), 618–635 (1995)

    Google Scholar 

  78. Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W., Johnson, J.E.: Topologically linked protein rings in the bacteriophage hk97 capsid. Science 289(5487), 2129–2133 (2000)

    Article  ADS  Google Scholar 

  79. Conway, J.F., Wikoff, W.R., Cheng, N., Duda, R.L., Hendrix, R.W., Johnson, J.E., Steven, A.C.: Virus maturation involving large subunit rotations and local refolding. Science 292(5517), 744–748 (2001)

    Article  ADS  Google Scholar 

  80. Ross, P.D., Conway, J.F., Cheng, N., Dierkes, L., Firek, B.A., Hendrix, R.W., Steven, A.C., Duda, R.L.: A free energy cascade with locks drives assembly and maturation of bacteriophage hk97 capsid. J. Mol. Biol. 364(3), 512–525 (2006)

    Article  Google Scholar 

  81. Gertsman, I., Gan, L., Guttman, M., Lee, K., Speir, J.A., Duda, R.L., Hendrix, R.W., Komives, E.A., Johnson, J.E.: An unexpected twist in viral capsid maturation. Nature 458(7238), 646–650 (2009)

    Article  ADS  Google Scholar 

  82. Gan, L., Conway, J.F., Firek, B.A., Cheng, N., Hendrix, R.W., Steven, A.C., Johnson, J.E., Duda, R.L.: Control of crosslinking by quaternary structure changes during bacteriophage hk97 maturation. Mol. Cell 14(5), 559–569 (2004)

    Article  Google Scholar 

  83. Steven, A.C., Heymann, J.B., Cheng, N., Trus, B.L., Conway, J.F.: Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr. Opin. Struct. Biol. 15(2), 227–236 (2005)

    Article  Google Scholar 

  84. Lee, K.K., Gan, L., Tsuruta, H., Hendrix, R.W., Duda, R.L., Johnson, J.E.: Evidence that a local refolding event triggers maturation of hk97 bacteriophage capsid. J. Mol. Biol. 340(3), 419–433 (2004)

    Article  Google Scholar 

  85. May, E.R., Brooks III, C.L.: Determination of viral capsid elastic properties from equilibrium thermal fluctuations. Phys. Rev. Lett. 106, 188101–188104 (2011)

    Article  ADS  Google Scholar 

  86. May, E.R., Aggarwal, A., Klug, W.S., Brooks III, C.L.: Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys. J. 100, L59–L61 (2011)

    Article  Google Scholar 

  87. Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.L.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. USA 101(20), 7600–7605 (2004)

    Article  ADS  Google Scholar 

  88. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103(16), 6184–6189 (2006)

    Article  ADS  Google Scholar 

  89. Kol, N., Gladnikoff, M., Barlam, D., Shneck, R.Z., Rein, A., Rousso, I.: Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys. J. 91(2), 767–774 (2006)

    Article  ADS  Google Scholar 

  90. Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gmez-Herrero, J., Mateu, M.G., de Pablo, P.J.: Dna-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103(37), 13706–13711 (2006)

    Article  ADS  Google Scholar 

  91. Roos, W.H., Gibbons, M.M., Arkhipov, A., Uetrecht, C., Watts, N.R., Wingfield, P.T., Steven, A.C., Heck, A.J.R., Schulten, K., Klug, W.S., Wuite, G.J.L.: Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys. J. 99(4), 1175–1181 (2010)

    Article  ADS  Google Scholar 

  92. Tama, F., Brooks, C.L.: Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35, 115–133 (2006)

    Article  Google Scholar 

  93. Tirion, M.M.: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77(9), 1905–1908 (1996)

    Article  ADS  Google Scholar 

  94. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, London (1959)

    Google Scholar 

  95. Cagin, T., Holder, M., Pettitt, B.M.: A method for modeling icosahedral virions rotational symmetry boundary-conditions. J. Comput. Chem. 12(5), 627–634 (1991)

    Article  Google Scholar 

  96. Tama, F., Brooks III, C.L.: Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J. Mol. Biol. 345(2), 299–314 (2005)

    Article  Google Scholar 

  97. Khavrutskii, I.V., Arora, K., Brooks III, C.L.: Harmonic fourier beads method for studying rare events on rugged energy surfaces. J. Chem. Phys. 125(17), 174108 (2006)

    Article  ADS  Google Scholar 

  98. Arora, K., Brooks III, C.L. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc. Natl. Acad. Sci. USA 104(47), 18496–18501 (2007)

    Article  ADS  Google Scholar 

  99. Arora, K., Brooks III, C.L. Functionally important conformations of the met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J. Am. Chem. Soc. 131, 5642–5647 (2009)

    Article  Google Scholar 

  100. Lee, M.S., Salsbury, F.R., Brooks III, C.L. Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56(4), 738–752 (2004)

    Article  Google Scholar 

  101. Khandogin, J., Brooks III, C.L. Constant pH molecular dynamics with proton tautomerism. Biophys. J. 89(1), 141–157 (2005)

    Article  Google Scholar 

  102. May, E.R., Armen, R.S., Mannan, A.M., Brooks III, C.L.: The flexible c-terminal arm of the lassa arenavirus z-protein mediates interactions with multiple binding partners. Proteins 78(10), 2251–2264 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the NSF through the center for theoretical biological physics (CTBP) at the University of California, San Diego (PHY0216576), by the National Institute of Health for funding through the multiscale modeling tools for structural biology (MMTSB) research resource center RR012255, and research grant GM037555, and by the National Science Foundation through a postdoctoral fellowship to ERM (DBI-0905773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Brooks III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

May, E.R., Arora, K., Mannige, R.V., Nguyen, H.D., Brooks, C.L. (2012). Multiscale Modeling of Virus Structure, Assembly, and Dynamics. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics