Abstract
Viruses are traditionally considered as infectious agents that attack cells and cause illnesses like AIDS, Influenza, Hepatitis, etc. However, recent advances have illustrated the potential for viruses to play positive roles for human health, instead of causing disease [1, 2]. For example, viruses can be employed for a variety of biomedical and biotechnological applications, including gene therapy[3], drug delivery[4], tumor targeting[5], and medical imaging[6]. Therefore, it is important to understand quantitatively how viruses operate such that they can be engineered in a predictive manner for beneficial roles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Uchida, M., Klem, M.T., Allen, M., Suci, P., Flenniken, M., Gillitzer, E., Varpness, Z., Liepold, L.O., Young, M., Douglas, T.: Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19(8), 1025–1042 (2007)
Maham, A., Tang, Z., Wu, H., Wang, J., Lin, Y.: Protein-based nanomedicine platforms for drug delivery. Small 5(15), 1706–1721 (2009)
Miller, A.D.: Human gene therapy comes of age. Nature 357(6378), 455–460 (1992)
Douglas, T., Young, M.: Host-guest encapsulation of materials by assembled virus protein cages. Nature 393(6681), 152–155 (1998)
Destito, G., Yeh, R., Rae, C.S., Finn, M.G., Manchester, M.: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 14(10), 1152–1162 (2007)
Gupta, S.S., Raja, K.S., Kaltgrad, E., Strable, E., Finn, M.G.: Virus-glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem. Commun. (Camb.) (34), 4315–4317 (2005)
Smith, D.E., Tans, S.J., Smith, S.B., Grimes, S., Anderson, D.L., Bustamante, C.: The bacteriophage straight phi29 portal motor can package dna against a large internal force. Nature 413(6857), 748–752 (2001)
Ivanovska, I., Wuite, G., Jnsson, B., Evilevitch, A.: Internal dna pressure modifies stability of wt phage. Proc. Natl. Acad. Sci. USA 104(23), 9603–9608 (2007)
Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nature Phys. 6(10), 733–743 (2010)
Bancroft, J.B., Hills, G.J., Markham, R.: A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology 31(2), 354–379 (1967)
Rose, R.C., Bonnez, W., Reichman, R.C., Garcea, R.L.: Expression of human papillomavirus type l1 (HPV-l1) protein in insect cells: in vivo and in vitro assembly of viruslike particles. J. Virol. 67(4), 1936–1944 (1993)
Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W., Steven, A.C.: Proteolytic and conformational control of virus capsid maturation: the bacteriophage hk97 system. J. Mol. Biol. 253(1), 86–99 (1995)
Lata, R., Conway, J.F., Cheng, N., Duda, R.L., Hendrix, R.W., Wikoff, W.R., Johnson, J.E., Tsuruta, H., Steven, A.C.: Maturation dynamics of a viral capsid: visualization of transitional intermediate states. Cell 100(2), 253–263 (2000)
Adolph, K.W., Butler, P.J.: Studies on the assembly of a spherical plant virus. I. States of aggregation of the isolated protein. J. Mol. Biol. 88(2), 327–41 (1974)
Rossmann, M.G.: Constraints on the assembly of spherical virus particles. Virology 134(1), 1–11 (1984)
Ceres, P., Zlotnick, A.: Weak protein–protein interactions are sufficient to drive assembly of hepatitis b virus capsids. Biochemistry 41, 11525–11531 (2002)
Johnson, J.M., Willits, D.A., Young, M.J., Zlotnick, A.: Interaction with capsid protein alters rna structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus. J. Mol. Biol. 335(2), 455–64 (2004)
Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75, 2626–2636 (1998)
Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J., Endres, D.: A theoretical model successfully identifies features of hepatitis b virus capsid assembly. Biochemistry 38(44), 14644–14652 (1999)
Bruinsma, R.F., Gelbart, W.M., Reguera, D., Rudnick, J., Zandi, R.: Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90(24), 248101 (2003)
Arkhipov, A., Freddolino, P.L., Schulten, K.: Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14(12), 1767–1777 (2006)
Zink, M., Grubmller, H.: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 96(4), 1350–1363 (2009)
Caspar, D.L.D.: Structure of bushy stunt virus. Nature 177(4506), 476–477 (1956)
Crick, F.H., Watson, J.D.: Structure of small viruses. Nature 177(4506), 473–475 (1956)
Horne, R.W., Wildy, P.: Symmetry in virus architecture. Virology 15, 348–373 (1961)
Caspar, D.L., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962)
Schwartz, R.S., Garcea, R.L., Berger, B.: ‘local rules’ theory applied to polyomavirus polymorphic capsid assemblies. Virology 268(2), 461–470 (2000)
Rapaport, D.C.: Self-assembly of polyhedral shells: a molecular dynamics study. Phys. Rev. E 70(5), 1539–1555 (2004)
Endres, D., Miyahara, M., Moisant, P., Zlotnick, A.: A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Prot. Sci. 14, 1518–1525 (2005)
Keef, T., Taormina, A., Twarock, R.: Assembly models for papovaviridae based on tiling theory. Phys. Biol. 2(3), 175–188 (2005)
Keef, T., Micheletti, C., Twarock, R.: Master equation approach to the assembly of viral capsids. J. Theor. Biol. 242(3), 713–721 (2006)
Hagan, M.F., Chandler, D.: Dynamic pathways for viral capsid assembly. Biophys. J. 91, 42–54 (2006)
Nguyen, H.D., Reddy, V.S., Brooks III, C.L. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett. 7(2), 338–344 (2007)
Workum, K.V., Douglas, J.F.: Symmetry, equivalence, and molecular self-assembly. Phys. Rev. E 73, 031502 (2006)
Chen, T., Zhang, Z., Glotzer, S.C.: A precise packing sequence for self-assembled convex structures. Proc. Natl. Acad. Sci. USA 104(3), 717–722 (2007)
Mannige, R.V., Brooks III, C.L.: Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling. Proc. Natl. Acad. Sci. USA 106(21), 8531–8536 (2009)
Mannige, R.V., Brooks III, C.L.: Periodic table of virus capsids: implications for natural selection and design. PLoS One 5(3), e9423 (2010)
Twarock, R.: A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226(4), 477–482 (2004)
Twarock, R.: Mathematical virology: a novel approach to the structure and assembly of viruses. Phil. Trans. R. Soc. A 364, 3357–3373 (2006)
Mannige, R.V., Brooks III, C.L.: Tilable nature of virus capsids and the role of topological constraints in natural capsid design. Phys. Rev. E 77(5), 051902 (2008)
Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910–051919 (2003)
Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral shells. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72(5 Pt 1), 051923 (2005)
Zandi, R., Reguera, D.: Mechanical properties of viral capsids. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72, 021917 (2005)
Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101(44), 15556–15560 (2004)
Bamford, D.H., Grimes, J.M., Stuart, D.I.: What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15(6), 655–663 (2005)
Johnson, J.E., Speir, J.A.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269(5), 665–75 (1997)
Dokland, T., McKenna, R., Ilag, L.L., Bowman, B.R., Incardona, N.L., Fane, B.A., Rossmann, M.G.: Structure of a viral procapsid with molecular scaffolding. Nature 389(6648), 308–313 (1997)
Douglas, T., Young, M.: Viruses: making friends with old foes. Science 312(5775), 873–875 (2006)
Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Barr, E., Alvarez, F.B., Chiacchierini, L.M., Jansen, K.U.: A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347(21), 1645–1651 (2002)
Shank-Retzlaff, M., Wang, F., Morley, T., Anderson, C., Hamm, M., Brown, M., Rowland, K., Pancari, G., Zorman, J., Lowe, R., Schultz, L., Teyral, J., Capen, R., Oswald, C.B., Wang, Y., Washabaugh, M., Jansen, K., Sitrin, R.: Correlation between mouse potency and in vitro relative potency for human papillomavirus type 16 virus-like particles and gardasil vaccine samples. Hum. Vaccin. 1(5), 191–7 (2005)
Shi, L., Sings, H.L., Bryan, J.T., Wang, B., Wang, Y., Mach, H., Kosinski, M., Washabaugh, M.W., Sitrin, R., Barr, E.: Gardasil: prophylactic human papillomavirus vaccine development–from bench top to bed-side. Clin. Pharmacol. Ther. 81(2), 259–64 (2007)
Wales, D.J.: Closed-shell structures and the building game. Chem. Phys. Lett. 141, 478–484 (1987)
Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. USA. 91, 7732–7736 (1994)
Zlotnick, A.: To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J. Mol. Biol. 241(1), 59–67 (1994)
Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83, 1217–1230 (2002)
Reddy, V.S., Giesing, H.A., Morton, R.T., Kumar, A., Post, C.B., Brooks III, C.L., Johnson, J.E.: Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys. J. 74(1), 546–558 (1998)
Shepherd, C.M., Borelli, I.A., Lander, G., Natarajan, P., Siddavanahalli, V., Bajaj, C., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: Viperdb: a relational database for structural virology. Nucleic Acids Res. 34, D386–D389. (2006)
Zlotnick, A., Aldrich, R., Johnson, J.M., Ceres, P., Young, M.J.: Mechanism of capsid assembly for an icosahedral plant virus. Virology 277, 450–456 (2000)
Casini, G.L., Graham, D., Heine, D., Garcea, R.L., Wu, D.L.: In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325, 320–327 (2004)
Zhang, T., Schwartz, R.: Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics. Biophys. J. 90, 57–64 (2006)
Hicks, S.D., Henley, C.L.: Irreversible growth model for virus capsid assembly. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 74(3 Pt 1), 031912 (2006)
Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)
Rapaport, D.C.: Molecular dynamics simulation of polymer chains with excluded volume. J. Phys. A 11, L213–L217 (1978)
Bellemans, A., Orban, J., Belle, D.V.: Molecular dynamics of rigid and non-rigid necklaces of hard discs. Mol. Phys. 39, 781–782 (1980)
Nguyen, H.D., Reddy, V.S., Brooks III, C.L. Invariant polymorphism in virus capsid assembly. J. Am. Chem. Soc. 131(7), 2606–14 (2009)
Sorger, P.K., Stockley, P.G., Harrison, S.C.: Structure and assembly of turnip crinkle virus. ii. mechanism of reassembly in vitro. J. Mol. Biol. 191(4), 639–658 (1986)
Earnshaw, W., King, J.: Structure of phage p22 coat protein aggregates formed in the absence of the scaffolding protein. J. Mol. Biol. 126, 721–747 (1978)
Bancroft, J.B., Bracker, C.E., Wagner, G.W.: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. Virology 38(2), 324–35 (1969)
Salunke, D.M., Caspar, D.L., Garcea, R.L.: Polymorphism in the assembly of polyomavirus capsid protein vp1. Biophys. J. 56(5), 887–900 (1989)
Kanesashi, S.N., Ishizu, K., Kawano, M.A., Han, S.I., Tomita, S., Watanabe, H., Kataoka, K., Handa, H.: Simian virus 40 vp1 capsid protein forms polymorphic assemblies in vitro. J. Gen. Virol. 84(Pt 7), 1899–905 (2003)
Zhao, Q., Guo, H.H., Wang, Y., Washabaugh, M.W., Sitrin, R.D.: Visualization of discrete l1 oligomers in human papillomavirus 16 virus-like particles by gel electrophoresis with coomassie staining. J. Virol. Methods 127(2), 133–40 (2005)
Fu, C.Y., Morais, M.C., Battisti, A.J., Rossmann, M.G., Jr. Prevelige, P.E.: Molecular dissection of o29 scaffolding protein function in an in vitro assembly system. J. Mol. Biol. 366(4), 1161–1173 (2007)
Dong, X.F., Natarajan, P., Tihova, M., Johnson, J.E., Schneemann, A.: Particle polymorphism caused by deletion of a peptide molecular switch in a auasiequivalent icosahedral virus. J. Virol. 72(7), 6024–6033 (1998)
Cusack, S., Oostergetel, G.T., Krijgsman, P.C., Mellema, J.E.: Structure of the top a-t component of alfalfa mosaic virus. A non-icosahedral virion. J. Mol. Biol. 171(2), 139–55 (1983)
Nguyen, H.D., Brooks III, C.L.: Generalized structural polymorphism in self-assembled viral particles. Nano Lett. 8, 4574–81 (2008)
Xie, Z., Hendrix, R.W.: Assembly in vitro of bacteriophage hk97 proheads. J. Mol. Biol. 253(1), 74–85 (1995)
Duda, R.L., Hempel, J., Michel, H., Shabanowitz, J., Hunt, D., Hendrix, R.W.: Structural transitions during bacteriophage hk97 head assembly. J. Mol. Biol. 247(4), 618–635 (1995)
Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W., Johnson, J.E.: Topologically linked protein rings in the bacteriophage hk97 capsid. Science 289(5487), 2129–2133 (2000)
Conway, J.F., Wikoff, W.R., Cheng, N., Duda, R.L., Hendrix, R.W., Johnson, J.E., Steven, A.C.: Virus maturation involving large subunit rotations and local refolding. Science 292(5517), 744–748 (2001)
Ross, P.D., Conway, J.F., Cheng, N., Dierkes, L., Firek, B.A., Hendrix, R.W., Steven, A.C., Duda, R.L.: A free energy cascade with locks drives assembly and maturation of bacteriophage hk97 capsid. J. Mol. Biol. 364(3), 512–525 (2006)
Gertsman, I., Gan, L., Guttman, M., Lee, K., Speir, J.A., Duda, R.L., Hendrix, R.W., Komives, E.A., Johnson, J.E.: An unexpected twist in viral capsid maturation. Nature 458(7238), 646–650 (2009)
Gan, L., Conway, J.F., Firek, B.A., Cheng, N., Hendrix, R.W., Steven, A.C., Johnson, J.E., Duda, R.L.: Control of crosslinking by quaternary structure changes during bacteriophage hk97 maturation. Mol. Cell 14(5), 559–569 (2004)
Steven, A.C., Heymann, J.B., Cheng, N., Trus, B.L., Conway, J.F.: Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr. Opin. Struct. Biol. 15(2), 227–236 (2005)
Lee, K.K., Gan, L., Tsuruta, H., Hendrix, R.W., Duda, R.L., Johnson, J.E.: Evidence that a local refolding event triggers maturation of hk97 bacteriophage capsid. J. Mol. Biol. 340(3), 419–433 (2004)
May, E.R., Brooks III, C.L.: Determination of viral capsid elastic properties from equilibrium thermal fluctuations. Phys. Rev. Lett. 106, 188101–188104 (2011)
May, E.R., Aggarwal, A., Klug, W.S., Brooks III, C.L.: Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys. J. 100, L59–L61 (2011)
Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.L.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. USA 101(20), 7600–7605 (2004)
Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103(16), 6184–6189 (2006)
Kol, N., Gladnikoff, M., Barlam, D., Shneck, R.Z., Rein, A., Rousso, I.: Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys. J. 91(2), 767–774 (2006)
Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gmez-Herrero, J., Mateu, M.G., de Pablo, P.J.: Dna-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103(37), 13706–13711 (2006)
Roos, W.H., Gibbons, M.M., Arkhipov, A., Uetrecht, C., Watts, N.R., Wingfield, P.T., Steven, A.C., Heck, A.J.R., Schulten, K., Klug, W.S., Wuite, G.J.L.: Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys. J. 99(4), 1175–1181 (2010)
Tama, F., Brooks, C.L.: Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35, 115–133 (2006)
Tirion, M.M.: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77(9), 1905–1908 (1996)
Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, London (1959)
Cagin, T., Holder, M., Pettitt, B.M.: A method for modeling icosahedral virions rotational symmetry boundary-conditions. J. Comput. Chem. 12(5), 627–634 (1991)
Tama, F., Brooks III, C.L.: Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J. Mol. Biol. 345(2), 299–314 (2005)
Khavrutskii, I.V., Arora, K., Brooks III, C.L.: Harmonic fourier beads method for studying rare events on rugged energy surfaces. J. Chem. Phys. 125(17), 174108 (2006)
Arora, K., Brooks III, C.L. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc. Natl. Acad. Sci. USA 104(47), 18496–18501 (2007)
Arora, K., Brooks III, C.L. Functionally important conformations of the met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J. Am. Chem. Soc. 131, 5642–5647 (2009)
Lee, M.S., Salsbury, F.R., Brooks III, C.L. Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56(4), 738–752 (2004)
Khandogin, J., Brooks III, C.L. Constant pH molecular dynamics with proton tautomerism. Biophys. J. 89(1), 141–157 (2005)
May, E.R., Armen, R.S., Mannan, A.M., Brooks III, C.L.: The flexible c-terminal arm of the lassa arenavirus z-protein mediates interactions with multiple binding partners. Proteins 78(10), 2251–2264 (2010)
Acknowledgements
This work has been supported by the NSF through the center for theoretical biological physics (CTBP) at the University of California, San Diego (PHY0216576), by the National Institute of Health for funding through the multiscale modeling tools for structural biology (MMTSB) research resource center RR012255, and research grant GM037555, and by the National Science Foundation through a postdoctoral fellowship to ERM (DBI-0905773).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
May, E.R., Arora, K., Mannige, R.V., Nguyen, H.D., Brooks, C.L. (2012). Multiscale Modeling of Virus Structure, Assembly, and Dynamics. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_7
Download citation
DOI: https://doi.org/10.1007/978-1-4614-2146-7_7
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4614-2145-0
Online ISBN: 978-1-4614-2146-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)