Advertisement

Theoretical Analysis of Molecular Transport Across Membrane Channels and Nanopores

  • Anatoly B. Kolomeisky
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

A successful functioning of cellular systems requires that some molecules and ions be transferred out of the cell while other particles should be taken in. The bidirectional flux is accomplished with the help of a complex system of membrane protein channels and pores [1, 2]. It is known that molecular transport across cellular membranes is fast, efficient, selective, and that the functioning of channels is robust with respect to strong nonequilibrium fluctuations in the cellular environment [2]. These observations are especially surprising because in many cases molecular translocation does not involve the use of metabolic energy or significant conformational changes [4]. Although in recent years significant advances in studying molecular transport in biological systems have been achieved, the mechanisms of translocation phenomena are still not well understood.

Keywords

Particle Flux Molecular Transport Particle Current Significant Conformational Change Uniform Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman and Company, New York (2002)Google Scholar
  2. 2.
    Hille, B.: Ionic Channels of Excitable Membranes, 3rd edn. Sinauer Associates, Sunderland Massachusetts (2001)Google Scholar
  3. 3.
    Nekolla, S., Andersen, C., Benz, R.: Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys. J. 66, 1388–1397 (1994)CrossRefGoogle Scholar
  4. 4.
    Wickner, W., Schekman, R.: Protein translocation across biological membranes. Science 310, 1452–1456 (2005)Google Scholar
  5. 5.
    Hilty, C., Winterhalter, M.: Facilitated substrate transport through membrane proteins. Phys. Rev. Lett. 86, 5624–5627 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Kullman, L., Winterhalter, M., Bezrukov, S.M.: Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82, 803–812 (2002)CrossRefGoogle Scholar
  7. 7.
    Nestorovich, E.M., Danelon, C., Winterhalter, M., Bezrukov, S.M.: Designed to penetrate: time-resolved interactions of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA 99, 9789–9794 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Danelon, C., Brando, T. Winterhalter, M.: Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278, 35542–35551 (2003)CrossRefGoogle Scholar
  9. 9.
    Schwarz, G., Danelon, C., Winterhalter, M.: On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Biophys. J. 84, 2990–2998 (2004)CrossRefGoogle Scholar
  10. 10.
    Krasilnikov, O.V., Rodrigues, C.G., Bezrukov, S.M.: Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 97, 018301 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Caspi, Y., Zbaida, D., Elbaum, M.: Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett. 8, 3728–3734 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Karginov, V.A., Nestorovich, E.M., Moayeri, M., Leppla, S.H., Bezrukov, S.M.: Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc. Natl. Acad. Sci. USA 102, 15075–15080 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Kohli, P., Harrell, C.C., Cao, Z., Gasparac, R., Tan, W., Martin, C.R.: DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Wolfe, A.J., Mohammad, M.M., Cheley, S., Bayley, H., Movileanu, L.: Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129, 14034–14041 (2007)CrossRefGoogle Scholar
  15. 15.
    Mohammad, M.M., Prakash, S., Matouschek, A., Movileanu, L.: Controlling a single protein in a nanopore through electrostatic traps. J. Am. Chem. Soc. 130, 4081–4088 (2008)CrossRefGoogle Scholar
  16. 16.
    Niedzwiecki, D.J., Grazul, J., Movileanu, L.: Single-molecule observation of protein adsorption onto an inorganic surface. J. Am. Chem. Soc. 132, 10816–10822 (2010)CrossRefGoogle Scholar
  17. 17.
    Gillespie, D., Boda, D., He, Y., Apel, P., Siwy, Z.S.: Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys. J. 95, 609–619 (2008)CrossRefGoogle Scholar
  18. 18.
    Jensen, M.O., Park, S., Tajkhorshid, E., Schulten, K.: Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA 99, 6731–6736 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    de Groot, B.L., Grubmüller, H.: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Chou, T.: How fast do fluids squeeze through microscopic single-file pores? Phys. Rev. Lett. 80, 85–88 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Chou, T.: Kinetics and thermodynamics across single-file pores: solute permeability and rectified osmosis. J. Chem. Phys. 110, 606–615 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Channel-facilitated membrane transport: transit probability and interaction. J. Chem. Phys. 116, 9952–9956 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Channel-facilitated membrane transport: average lifetimes in the channel. J. Chem. Phys. 119, 3943–3951 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Berezhkovskii, A.M., Bezrukov, S.M.: Channel-facilitated membrane transport: constructive role of particle attraction to the channel pore. Chem. Phys. 319, 342–349 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Berezhkovskii, A.M., Bezrukov, S.M.: Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophys. J. 88, L17–L19 (2005)CrossRefGoogle Scholar
  26. 26.
    Bezrukov, S.M., Berezhkovskii, A.M., Szabo, A.: Diffusion model of solute dynamics in a membrane channel: mapping onto the two-site model and optimizing the flux. J. Chem. Phys. 127, 115101 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Fluxes of non-interacting and strongly repelling particles through a single conical channel: analytical results and their numerical tests. Chem. Phys. 375, 523–528 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Kolomeisky, A.B.: Channel-facilitated molecular transport across membranes: attraction, repulsion and asymmetry. Phys.Rev. Lett. 98, 048105 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Kolomeisky, A.B., Kotsev, S.: Effect of interactions on molecular fluxes and fluctuations in the transport across membrane channels. J. Chem. Phys. 128, 085101 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Zilman, A.: Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: theory versus experiment. Biophys. J. 96, 1235–1248 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Zilman, A., Pearson, J., Bel, G.: Effects of jamming on nonequilibrium transport times in nanochannels. Phys. Rev. Lett. 103, 128103 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Kolomeisky, A.B., Slonkina, E.: Polymer translocation through a long nanopore. J. Chem. Phys. 118, 7112–7118 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorists’s perspective. Ann. Rev. Phys. Chem. 58, 675–695 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Chacinska, A., Pfanner, N., Meisinger, C.: How mitochondria import hydrophilic and hydrophobic proteins. Trends Cell Biol. 12, 299–303 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations