Nanomedicine pp 101-115 | Cite as

Multifunctional Nanoparticles for Theranostics and Imaging

  • Xue Xue
  • Xing-Jie Liang
Part of the Nanostructure Science and Technology book series (NST)


A nanoparticle constituted with nanoscale or nanostructured materials can be modified by approximate 1,500 potential sites. This unique property of nanoparticle is the foundation to employ nanostructures possible for theranostics in nanomedicine. The attractive features to nanoparticles (NPs) can result in several advantageous strategies including both drug(s) and imaging agent(s) encapsulated within an individual nanoparticle for simultaneous disease diagnosis and therapy. These nanostructural platforms derive their effectiveness from adequate delivery systems including polymer, dendrimers, nanoshells, nanotubes, micelles, liposomes, lipid-based nanoparticles, magnetic nanoparticles and virus nanoparticles, and so on. The most appealing properties of nanoparticles are their nanoscale size and controllable surface for different modifications. Moreover, compared to traditional molecular-based contrast agents or therapeutic drugs, the great capacity for modified nanoparticle has led to their use as amplifiers for challenging many intractable health issues. Nanomedicine paradigm enables to incorporate different functional substitutions for promoting contrast and/or targeting, such as sensitive imaging or/and long-period therapy, it can be realized by fabrication in an integrated system to improve the process of pharmacokinetics action (absorption, distribution, metabolism and excretion). This chapter focuses on the emerging concept of multifunctional theranostic nanomedicine and the opportunities for imaging engineer with high sensitivity and molecular specificity.


Nanomedicine Therapy Diagnostics Imaging 



Reactive oxygen species


Single-walled carbon nanotubes


Double-walled carbon nanotubes


Multi-walled carbon nanotubes


Carbon nanotubes




Middle cerebral artery occlusion


Computed tomography


Magnetic resonance imaging

GNPs or AuNPs

Gold nanoparticles


Photon emission tomography


Iron oxide nanoparticles


Superparamagnetic iron oxide nanoparticles


Folate receptor-α


Circulating tumor cells







This work was financially supported by the National Key Basic Research Program of China (MOST 973 projects 2009CB930200) and the program of National Natural Science Foundation of China (30970784 and 81171455). The authors are grateful for the support of the Chinese Academy of Sciences (CAS) “Hundred Talents Program” and the CAS Knowledge Innovation Program. Authors declare that there are no conflicts of interest in this study.


  1. 1.
    Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17:928–934CrossRefGoogle Scholar
  2. 2.
    Kuhlmeier D, Sandetskaya N, Allelein S (2012) Application of nanotechnology in miniaturized systems and its use in medical and food analysis. Recent Pat Food Nutr Agric 4:187–199CrossRefGoogle Scholar
  3. 3.
    Osminkina L, Tamarov K, Sviridov A et al (2012) Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications. J Biophotonics 5:529–535CrossRefGoogle Scholar
  4. 4.
    Wujcik E, Monty C (2013) Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:233–249CrossRefGoogle Scholar
  5. 5.
    Zhou X, Porter A, Robinson D et al (2014) Nano-enabled drug delivery: a research profile. Nanomed: Nanotechnol Biol Med 10(5):889–896CrossRefGoogle Scholar
  6. 6.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  7. 7.
    Muthu M, Leong D, Mei L et al (2014) Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677CrossRefGoogle Scholar
  8. 8.
    Fang C, Zhang M (2010) Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J Control Release 146:2–5CrossRefGoogle Scholar
  9. 9.
    Lu Z, Dai T, Huang L et al (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond) 5:1525–1533CrossRefGoogle Scholar
  10. 10.
    Mroz P, Xia Y, Asanuma D et al (2011) Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine 7:965–974Google Scholar
  11. 11.
    Cai X, Jia H, Liu Z et al (2008) Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson’s disease. J Neurosci Res 86:3622–3634CrossRefGoogle Scholar
  12. 12.
    Lao F, Chen L, Li W et al (2009) Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 3:3358–3368CrossRefGoogle Scholar
  13. 13.
    Nishizawa C, Hashimoto N, Yokoo S et al (2009) Pyrrolidinium-type fullerene derivative-induced apoptosis by the generation of reactive oxygen species in HL-60 cells. Free Radic Res 43:1240–1247CrossRefGoogle Scholar
  14. 14.
    Palyvoda K, Grynyuk II, Prylutska S et al (2010) Apoptosis photoinduction by C60 fullerene in human leukemic T cells. Ukr Biokhim Zh 82:121–127Google Scholar
  15. 15.
    Saitoh Y, Xiao L, Mizuno H et al (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081CrossRefGoogle Scholar
  16. 16.
    Yamakoshi Y, Aroua S, Nguyen T (2014) FD173: water-soluble fullerene materials for bioapplication. Faraday Discuss. doi: 10.1039/C4FD00076E Google Scholar
  17. 17.
    Sitharaman B, Zakharian T, Saraf A et al (2008) Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol Pharm 5:567–578CrossRefGoogle Scholar
  18. 18.
    Montellano A, Da Ros T, Bianco A et al (2011) Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041CrossRefGoogle Scholar
  19. 19.
    Sigwalt D, Holler M, Iehl J et al (2011) Gene delivery with polycationic fullerene hexakis-adducts. Chem Commun (Camb) 47:4640–4642CrossRefGoogle Scholar
  20. 20.
    Xing G, Yuan H, He R et al (2008) The strong MRI relaxivity of paramagnetic nanoparticles. J Phys Chem B 112:6288–6291CrossRefGoogle Scholar
  21. 21.
    Liang X, Meng H, Wang Y et al (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci U S A 107:7449–7454CrossRefGoogle Scholar
  22. 22.
    Yang D, Zhao Y, Guo H et al (2010) [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4:1178–1186CrossRefGoogle Scholar
  23. 23.
    Bui T, Stevenson J, Hoekman J et al (2010) Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging. PLoS One 5:e13082CrossRefGoogle Scholar
  24. 24.
    Feldmann V, Engelmann J, Gottschalk S et al (2012) Synthesis, characterization and examination of Gd[DO3A-hexylamine]-functionalized silica nanoparticles as contrast agent for MRI-applications. J Colloid Interface Sci 366:70–79Google Scholar
  25. 25.
    Firme C 3rd, Bandaru P (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6:245–256CrossRefGoogle Scholar
  26. 26.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl 41:1853–1859CrossRefGoogle Scholar
  27. 27.
    Hersam M (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394CrossRefGoogle Scholar
  28. 28.
    Lee H, Park J, Yoon O et al (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6:121–125CrossRefGoogle Scholar
  29. 29.
    Wang F, Kim D, Yoshitake T et al (2011) Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology 22:015103CrossRefGoogle Scholar
  30. 30.
    Wang L, Luanpitpong S, Castranova V et al (2011) Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett 11:2796–2803CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Xu Y, Li Z et al (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 5:7020–7033CrossRefGoogle Scholar
  32. 32.
    Ge C, Du J, Zhao L et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A 108:16968–16973CrossRefGoogle Scholar
  33. 33.
    Zhou X, Xu W, Liu G et al (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:138–146CrossRefGoogle Scholar
  34. 34.
    Lee D, Koo H, Sun I et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672CrossRefGoogle Scholar
  35. 35.
    Juve V, Cardinal M, Lombardi A et al (2013) Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 13:2234–2240CrossRefGoogle Scholar
  36. 36.
    De Jong W, Hagens W, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919CrossRefGoogle Scholar
  37. 37.
    Elbakry A, Wurster E, Zaky A et al (2012) Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small 8:3847–3856CrossRefGoogle Scholar
  38. 38.
    Lkhagvadulam B, Kim J, Yoon I et al (2013) Size-dependent photodynamic activity of gold nanoparticles conjugate of water soluble purpurin-18-N-methyl-d-glucamine. Biomed Res Int 2013:720579Google Scholar
  39. 39.
    Huo S, Ma H, Huang K et al (2013) Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73:319–330CrossRefGoogle Scholar
  40. 40.
    Ma X, Wu Y, Jin S et al (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639CrossRefGoogle Scholar
  41. 41.
    Zharov V, Kim J, Curiel D et al (2005) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326–345CrossRefGoogle Scholar
  42. 42.
    Hebert E, Debouttiere P, Lepage M et al (2010) Preferential tumour accumulation of gold nanoparticles, visualised by Magnetic Resonance Imaging: radiosensitisation studies in vivo and in vitro. Int J Radiat Biol 86:692–700CrossRefGoogle Scholar
  43. 43.
    Cabral H, Matsumoto Y, Mizuno K et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823Google Scholar
  44. 44.
    Liu-Snyder P, Webster T (2006) Designing drug-delivery systems for the nervous system using nanotechnology: opportunities and challenges. Expert Rev Med Devices 3:683–687CrossRefGoogle Scholar
  45. 45.
    Liu J, Tabata Y (2010) Photodynamic therapy of fullerene modified with pullulan on hepatoma cells. J Drug Target 18:602–610CrossRefGoogle Scholar
  46. 46.
    Wang Y, Wang K, Sun Q et al (2009) Novel manganese(II) and cobalt(II) 3D polymers with mixed cyanate and carboxylate bridges: crystal structure and magnetic properties. Dalton Trans 28:9854–9859Google Scholar
  47. 47.
    Torres Martin de Rosales R, Tavare R, Paul R et al (2011) Synthesis of 64Cu(II)-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent. Angew Chem Int Ed Engl 50:5509–5513CrossRefGoogle Scholar
  48. 48.
    Namiki Y, Namiki T, Yoshida H et al (2009) A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol 4:598–606CrossRefGoogle Scholar
  49. 49.
    Miki K, Oride K, Inoue S et al (2010) Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 31:934–942CrossRefGoogle Scholar
  50. 50.
    Muller C, Schibli R et al (2011) Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med 52:1–4CrossRefGoogle Scholar
  51. 51.
    Chen H, Li L, Cui S et al (2011) Folate conjugated CdHgTe quantum dots with high targeting affinity and sensitivity for in vivo early tumor diagnosis. J Fluoresc 21:793–801CrossRefGoogle Scholar
  52. 52.
    van Dam G, Themelis G, Crane L et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319CrossRefGoogle Scholar
  53. 53.
    Larson D, Zipfel W, Williams R et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefGoogle Scholar
  54. 54.
    Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25CrossRefGoogle Scholar
  55. 55.
    Abulrob A, Brunette E, Slinn J et al (2008) Dynamic analysis of the blood-brain barrier disruption in experimental stroke using time domain in vivo fluorescence imaging. Mol Imaging 7:248–262Google Scholar
  56. 56.
    Liu G, Chen F, Ellman J et al (2006) Peptide-nanoparticle hybrid SERS probe for dynamic detection of active cancer biomarker enzymes. Conf Proc IEEE Eng Med Biol Soc 1:795–798CrossRefGoogle Scholar
  57. 57.
    Christofori G (2006) New signals from the invasive front. Nature 441:444–450CrossRefGoogle Scholar
  58. 58.
    Pantel K, Brakenhoff R, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340CrossRefGoogle Scholar
  59. 59.
    Liang X (2011) EMT: new signals from the invasive front. Oral Oncol 47:686–687CrossRefGoogle Scholar
  60. 60.
    Galanzha E, Shashkov E, Kelly T et al (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4:855–860CrossRefGoogle Scholar
  61. 61.
    Balasubramanian S, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042CrossRefGoogle Scholar
  62. 62.
    Gheorghe D, Cui L, Karmonik C et al (2011) Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics. Nanoscale Res Lett 6:554CrossRefGoogle Scholar
  63. 63.
    Boros E, Ferreira C, Patrick B et al (2011) New Ga derivatives of the H(2)dedpa scaffold with improved clearance and persistent heart uptake. Nucl Med Biol 38:1165–1174Google Scholar
  64. 64.
    Vivero-Escoto J, Taylor-Pashow K, Huxford R et al (2011) Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7:3519–3528Google Scholar
  65. 65.
    Liu H, Hua M, Yang H et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107:15205–15210CrossRefGoogle Scholar
  66. 66.
    Kaldor I (1955) Studies on intermediary iron metabolism. VIII. The fate in mice of injected saccharated oxide of iron. Aust J Exp Biol Med Sci 33:645–649CrossRefGoogle Scholar
  67. 67.
    Pouliquen D, Le Jeune J, Perdrisot R et al (1991) Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging 9:275–283CrossRefGoogle Scholar
  68. 68.
    Oria R, Sanchez L, Houston T et al (1995) Effect of nitric oxide on expression of transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells. Blood 85:2962–2966Google Scholar
  69. 69.
    Hass F, Lee P, Lourenco R (1976) Tagging of iron oxide particles with 99mTc for use in the study of deposition and clearance of inhaled particles. J Nucl Med 17:122–125Google Scholar
  70. 70.
    Jain T, Reddy M, Morales M et al (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327CrossRefGoogle Scholar
  71. 71.
    Cheng Z, Al Zaki A, Hui J et al (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.National Center for Nanoscience and Technology of ChinaCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyBeijingPeople’s Republic of China

Personalised recommendations