Nanorobotics pp 411-423 | Cite as

Local Environmental Control Technique for Bacterial Flagellar Motor

  • Toshio Fukuda
  • Kousuke Nogawa
  • Masaru Kojima
  • Masahiro Nakajima
  • Michio Homma


Micro/nanorobots have attracted scientific attention to develop novel technologies such as drug delivery systems. Recently, microorganisms, especially flagellated bacteria, have been used as propulsion for microobjects. To enhance the controllability of bacteria-driven microrobots, it is needed to establish a method to control the bacterial driving force directly. In many cases, the bacterial movements are regulated by the environment. Therefore, local environmental control technique is desired for bacterial driving force control. In this chapter, we introduce a local environmental control technique based on nano/micro dual pipettes for bacterial flagellar motor control. We show transient-state control of Na+-driven flagellar motor rotational speed by switching local discharges between Na+-containing and -free solutions, and steady-state control by simultaneous local discharges of the solutions with controlling discharge velocities independently. We found that rotational torque generated by the flagellar motor could be controlled in 102 pN·nm orders using the local environmental control technique based on nano/micro dual pipettes.


Rotational Speed Free Solution Rotational Torque Flagellar Motor Flagellar Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138. doi: 10.1016/j.nano.2008.03.001 CrossRefGoogle Scholar
  2. 2.
    Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2009) Nanorobot for brain aneurysm. Int J Robot Res 28(4):558–570. doi: 10.1177/0278364908097586 CrossRefGoogle Scholar
  3. 3.
    Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled mri-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582. doi: 10.1177/0278364908100924 CrossRefGoogle Scholar
  4. 4.
    Martel S, Felfoul O, Mathieu JB, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 28(9):1169–1182. doi: 10.1177/0278364908104855 CrossRefGoogle Scholar
  5. 5.
    Patel GM, Patel GC, Patel RB, Patel JK, Patel M (2006) Nanorobot: a versatile tool in nanomedicine. J Drug Target 14(2):63–67. doi: 10.1080/10611860600612862 CrossRefGoogle Scholar
  6. 6.
    LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191. doi: 10.1038/nbt876 CrossRefGoogle Scholar
  7. 7.
    Hede S, Huilgol N (2006) Nano: the new nemesis of cancer. J Cancer Res Ther 2(4):186–195. doi: 10.4103/0973-1482.29829 CrossRefGoogle Scholar
  8. 8.
    Osada Y, Gong JP (2009) Nano-biomachine from actin and myosin gels. Polym Sci A 51(6):689–700. doi: 10.1134/S0965545X09060145 CrossRefGoogle Scholar
  9. 9.
    Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10(20):2741–2748. doi: 10.1039/C004615A CrossRefGoogle Scholar
  10. 10.
    Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290(5496):1555–1558. doi: 10.1126/science.290.5496.1555 CrossRefGoogle Scholar
  11. 11.
    Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K (2009) Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9(1):140–144. doi: 10.1039/B809299K CrossRefGoogle Scholar
  12. 12.
    Darnton N, Turner L, Breuer K, Berg HC (2004) Moving fluid with bacterial carpets. Biophys J 86(3):1863–1870. doi: 10.1016/S0006-3495(04)74253-8 CrossRefGoogle Scholar
  13. 13.
    Behkam B, Sitti M (2008) Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Appl Phys Lett 93:223901. doi: 10.1063/1.3040318 CrossRefGoogle Scholar
  14. 14.
    Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, Whitesides GM (2005) Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 102(34):11963–11967. doi: 10.1073/pnas.0505481102 CrossRefGoogle Scholar
  15. 15.
    Homma M, Oota H, Kojima S, Kawagishi I, Imae Y (1996) Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142:2777–2783. doi: 10.1099/13500872-142-10-2777 CrossRefGoogle Scholar
  16. 16.
    Hyakutake A, Kawagishi I, Homma M (2004) Motility- and chemotaxis-related genes of Vibrio spp. and their involvement in virulence. Jpn J Bacteriol 59(2):403–414 (in Japanese)CrossRefGoogle Scholar
  17. 17.
    Walter JM, Greenfield D, Bustamante C, Liphardt J (2007) Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci USA 104(7):2408–2412. doi: 10.1073/pnas.0611035104 CrossRefGoogle Scholar
  18. 18.
    Nogawa K, Kojima M, Nakajima M, Kojima S, Homma M, Fukuda T (2009) Rotational speed control of Na+-driven flagellar motor by dual pipettes. IEEE Trans Nanobiosci 8(4):341–348. doi: 10.1109/TNB.2009.2035281 CrossRefGoogle Scholar
  19. 19.
    Nogawa K, Kojima M, Nakajima M, Homma M, Fukuda T (2011) Driving force control of flagellar motor by local environmental control system with nano/micro dual pipettes. J Robot Soc Jpn 29(5):463–469 (in Japanese)CrossRefGoogle Scholar
  20. 20.
    Macnab R (1996) Flagella and motility. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular. American Society for Microbiology, Washington, DC, pp 123–145Google Scholar
  21. 21.
    Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505(1):82–93. doi: 10.1016/S0005-2728(00)00279-6 CrossRefGoogle Scholar
  22. 22.
    Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5(2):160–165. doi: 10.1016/S1369-5274(02)00302-8 CrossRefGoogle Scholar
  23. 23.
    Kojima S, Blair DF (2004) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134. doi: 10.1016/S0074-7696(04)33003-2 CrossRefGoogle Scholar
  24. 24.
    Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Nonequivalence of membrane voltage and iongradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93(1):294–302. doi: 10.1529/biophysj.106.095265 CrossRefGoogle Scholar
  25. 25.
    Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375(6534):809–812. doi: 10.1038/375809a0 CrossRefGoogle Scholar
  26. 26.
    Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S (1995) Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J 69(5):2154–2162. doi: 10.1016/S0006-3495(95)80089-5 CrossRefGoogle Scholar
  27. 27.
    Piper JD, Li C, Lo CJ, Berry R, Korchev Y, Ying L, Klenerman D (2008) Characterization and application of controllable local chemical changes produced by reagent delivery from a nanopipet. J Am Chem Soc 130(31):10386–10393. doi: 10.1021/ja8022253 CrossRefGoogle Scholar
  28. 28.
    Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249(452):73–74. doi: 10.1038/249073a0 CrossRefGoogle Scholar
  29. 29.
    Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, pp 106–107Google Scholar
  30. 30.
    Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667. doi: 10.1021/nl901869j CrossRefGoogle Scholar
  31. 31.
    Sánchez D, Anand U, Gorelik J, Benham CD, Bountra C, Lab M, Klenerman D, Birch R, Anand P, Korchev Y (2007) Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 159(1):26–34. doi: 10.1016/j.jneumeth.2006.06.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Toshio Fukuda
    • 1
    • 2
  • Kousuke Nogawa
    • 1
    • 3
  • Masaru Kojima
    • 4
  • Masahiro Nakajima
    • 2
  • Michio Homma
    • 5
  1. 1.Department of Micro-Nano Systems EngineeringNagoya University, Furo-choNagoyaJapan
  2. 2.Center For Micro-nano MechatronicsNagoya University, Furo-choNagoyaJapan
  3. 3.Institute for Advanced ResearchNagoya University, Furo-choNagoyaJapan
  4. 4.Department of Systems InnovationOsaka UniversityToyonakaJapan
  5. 5.Division of Biological ScienceNagoya University, Furo-choNagoyaJapan

Personalised recommendations