Skip to main content

Nanorobotic Manipulation and Sensing for Biomedical Applications

  • Chapter
  • First Online:
Nanorobotics
  • 2442 Accesses

Abstract

We developed a method for manipulating a single virus (size: 100nm) that employs optical tweezers in conjunction with dielectrophoretic (DEP) concentration of viruses on a microfluidic chip. The DEP force in the sample chamber concentrates the virus and prevents it from adhering to the glass substrate. The concentrated virus is transported to the sample selection section where it is trapped by optical tweezers. We demonstrated concentration of the virus using the DEP force, transported a single virus, and made it contact to a specific H292 cell. We also developed local measurement with functional gel-microtool for cell measurement. Gel-microtool was impregnated with indicators. In this chapter, bromothymol blue (BTB) and bromocresol green (BCG) were employed as pH indicators. Rhodamine B is temperature-sensitive fluorescent dye and is used for temperature measurement. Gel-microtool is manipulated by optical tweezers. Measurement is performed by detecting the color and the fluorescence intensity of each gel-microtool. We succeeded in pH measurement and temperature measurement using the gel-microtools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2001) On-chip culture system for observation of isolated individual cells. Lab Chip 1:50–55

    Article  Google Scholar 

  2. Amato I (2005) Nanotechnologists seek biological niches. Cell 123:967–970

    Article  Google Scholar 

  3. Parvin DJ, Palese P, Honda A, Ishihama A, Krystal M (1989) Promoter analysis of influenza virus RNA polymerase. J Virol 63:5142–5152

    Google Scholar 

  4. Bright RG, Fisher WG, Rogowska J, Taylor LD (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 104:1019–1033

    Article  Google Scholar 

  5. Suzuki M, Tseeb V, Oyama K, Ishiwata S (2007) Microscopic detection of thermogenesis in a single HeLa cell. Biophys J 92:L46–L48

    Article  Google Scholar 

  6. Castillo J, Dimaki M, Svendsen EW (2009) Manipulation of biological samples using micro and nano techniques. Integr Biol 1:30–42

    Article  Google Scholar 

  7. Arai F, Ichikawa A, Ogawa M, Fukuda T, Horio K, Itoigawa K (2001) High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 22:283–288

    Article  Google Scholar 

  8. Kim MS, Lee HS, Suh KY (2008) Cell research with physically modified microfluidic channels: a review. Lab Chip 8:1015–1023

    Article  Google Scholar 

  9. Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    Article  Google Scholar 

  10. Schnelle T, Müller T, Gradl G, Shirly GS, Fuhr G (2000) Dielectrophoretic manipulation of suspended submicron particles. Electrophoresis 21:66–73

    Article  Google Scholar 

  11. Arthur A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  Google Scholar 

  12. Zhang Z, Achilefu S (2005) Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem Commun 47:5887–5889

    Article  Google Scholar 

  13. Shinohara K, Sugii Y et al (2004) Measurement of pH field of chemically reacting flow in microfluidic devices by laser-induced fluorescence. Meas Sci Technol 15:955–960

    Article  Google Scholar 

  14. Nishimura G, Shiraishi Y, Hirai T (2005) A fluorescent chemosensor for wide-range pH detection. Chem Commun 42:13–5315

    Google Scholar 

  15. Kopelman R, Masuhara H, Sakaki K, Zhong-Yon S (1996) Three-dimensional pH microprobing with an optically-manipulated fluorescent particle. Chem Lett 25:141–142

    Google Scholar 

  16. Nagl S, Wolfbeis OS (2007) Optical multiple chemical sensing: status and current challenges. Analyst 132:507–511

    Article  Google Scholar 

  17. Cho JK, Wong LS et al (2004) PH Indicating resins. Chem Commun 13:1470–1471

    Article  Google Scholar 

  18. Arai F, Ichikawa A, Fukuda T, Katsuragi T (2003) Isolation and extraction of target microbes using thermal sol–gel transformation. Analyst 128:547–551

    Article  Google Scholar 

  19. Ichikawa A, Arai F, Yoshikawa K, Uchida T, Fukuda T (2005) In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms. Appl Phys Lett 87:191108-1–191108-3

    Google Scholar 

  20. Maruyama H, Arai F, Fukuda T, Katsuragi T (2005) Immobilization of individual cells by local photo-polymerization on a chip. Analyst 130:304–310

    Article  Google Scholar 

  21. Maruyama H, Arai F, Fukuda T (2008) On-chip pH measurement using functionalized gel-microbeads positioned by optical tweezers. Lab Chip 8:346–351

    Article  Google Scholar 

  22. Yamanishi Y, Sakuma S, Onda K, Arai F (2008) Biocompatible polymeric magnetically driven microtool for particle sorting. J Micro Nano Mechatron 4:49–57

    Article  Google Scholar 

  23. Ichikawa A, Honda A, Ejima M, Tanikawa T, Arai F, Fukuda T (2007) In-situ formation of a gel microbead for laser micromanipulation of microorganisms, DNA, and viruses. J Robot Mechatron 19:569–576

    Google Scholar 

  24. Müller T, Fiedler S, Schnelle T, Ludwig K, Jung H, Fuhr G (1996) High frequency electric fields for trapping of viruses. Biotechnol Tech 10:221–226

    Article  Google Scholar 

  25. Stanley MW (1944) The size of influenza virus. J Exp Med 79:267–283

    Article  Google Scholar 

  26. Kunz W, Henle J, Ninham WB (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37

    Article  Google Scholar 

  27. Stern H, Efros B (2005) Adaptive color space switching for tracking under varying illumination. Image Vis Comput 23:353–364

    Article  Google Scholar 

  28. Garcia C, Tziritas G (1999) Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia 1:264–277

    Article  Google Scholar 

  29. Kato H, Nishizawa T, Iga T, Kinoshita K, Ishiwata S (1999) Imaging of thermal activation of actomyosin motors. Proc Natl Acad Sci USA 96:9602–9606

    Article  Google Scholar 

  30. Arai F, Kotani K, Maruyama H (2009) On-chip robotics for biomedical innovation: manipulation of single virus on a chip. Proc IEEE NANO 2009:571–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihito Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arai, F., Maruyama, H. (2013). Nanorobotic Manipulation and Sensing for Biomedical Applications. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics