Abstract
The crucial role of imaging biomarkers is sparsely mentioned in the literature due to the complex nature of medical images, the interpretation variability and the multidisciplinary approach needed to extract, validate, and translate such biomarkers to the clinical setting. In the case of cancer, imaging biomarkers can play an important role in understanding the stage of the disease as well as the response (or not) to initial treatment as early as possible. In neurodegenerative diseases, imaging biomarkers can assist the early detection and diagnosis, before substantial symptoms appear. In this chapter, we describe the clinical importance of establishing robust imaging biomarkers as well as the limitations that need to be addressed. Then, we propose a clinically driven/ assisted image-analysis-based framework for extracting and assessing temporal image biomarkers comprising of geometrical normalization and image-information extraction. The proposed biomarker image discovery framework including a number of clinically useful tools developed by our group has been integrated in a platform called ‘DoctorEye’, a novel, open access and easy to use clinical multimodal image analysis environment. Based on this clinical platform, we describe three examples of imaging biomarker discovery involving our recent work for the case of brain MRI.
Keywords
- Positron Emission Tomography
- Gaussian Mixture Model
- Active Contour
- Active Contour Model
- Binary Mask
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Contracancrum project.
R. Cárdenes, M. Bach, Y. Chi, I. Marras, R. De Luis, M. Anderson, P. Cashman, and M. Bultelle. Multimodal evaluation for medical image segmentation. In Computer Analysis of Images and Patterns, pages 229–236. Springer, 2007.
Y. Chen, E.R. Dougherty, and M.L. Bittner. Ratio-based decisions and the quantitative analysis of cdna microarray images. Journal of Biomedical optics, 2(4):364–374, 1997.
G. Clapworthy, M. Viceconti, PV Coveney, and P. Kohl. The virtual physiological human: building a framework for computational biomedicine. Phil. Trans. R. Soc, 366:2975–2978, 2008.
L.D. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1131–1147, 1993.
B.C. Dickerson and R.A. Sperling. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx, 2(2):348–360, 2005.
C. Farmaki, K. Mavrigiannakis, K. Marias, M. Zervakis, and V. Sakkalis. Assessment of automated brain structures segmentation based on the mean-shift algorithm: Application in brain tumor. In ITAB2010, Corfu, Greece, November 2–5, 2010.
Cristina Farmaki, Konstantinos Marias, Vangelis Sakkalis, and Norbert Graf. Spatially adaptive active contours: a semi-automatic tumor segmentation framework. International Journal of Computer Assisted Radiology and Surgery, 5:369–384, 2010. 10.1007/s11548-010-0477-9.
C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.
R. Highnam and M. Brady. Mammographic image analysis, volume 14. Springer Netherlands, 1999.
M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International journal of computer vision, 1(4):321–331, 1988.
G. Manikis, D. Emmanouilidou, V. Sakkalis, N. Graf, and K. Marias. A fully automated image analysis framework for quantitative assessment of temporal tumor changes. International Conference on e-Health and Bioengineering (EHB 2011), Iaşi, Romania, November 24–26, 2011.
K. Marias, J. Ripoll, H. Meyer, V. Ntziachristos, and S. Orphanoudakis. Image analysis for assessing molecular activity changes in time-dependent geometries. IEEE Transactions on Medical Imaging, 24(7):894–900, 2005.
K. Marias, V. Sakkalis, A. Roniotis, C. Farmaki, G. Stamatakos, D. Dionysiou, S. Giatili, N. Uzunoglou, N. Graf, R. Bohle, et al. Clinically oriented translational cancer multilevel modeling: The contracancrum project. In World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, pages 2124–2127. Springer, 2009.
T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical image analysis, 1(2):91–108, 1996.
S. Mussurakis, DL Buckley, AM Coady, LW Turnbull, and A. Horsman. Observer variability in the interpretation of contrast enhanced mri of the breast. British journal of radiology, 69(827):1009, 1996.
G.P. Penney, J. Weese, J.A. Little, P. Desmedt, and D.L.G. Hill. A comparison of similarity measures for use in 2-d-3-d medical image registration. IEEE Transactions on Medical Imaging, 17(4):586–595, 1998.
P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.
E.M. Reiman, K. Chen, G.E. Alexander, R.J. Caselli, D. Bandy, D. Osborne, A.M. Saunders, and J. Hardy. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 101(1):284, 2004.
A. Rizk-Jackson, D. Stoffers, S. Sheldon, J. Kuperman, A. Dale, J. Goldstein, J. Corey-Bloom, R.A. Poldrack, and A.R. Aron. Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington’s disease using machine learning techniques. NeuroImage, 2010.
T. Rohlfing, N.M. Zahr, E.V. Sullivan, and A. Pfefferbaum. The sri24 multichannel atlas of normal adult human brain structure. Hum Brain Mapp, 31:798–819, 2010.
A. Roniotis, G. Manikis, V. Sakkalis, M. Zervakis, I. Karatzanis, and K. Marias. High grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases. IEEE Transactions on Information Technology, (available online: doi:10.1109/TITB.2011.2171190).
D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes. Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging, 18(8):712 –721, aug. 1999.
V. Sakkalis, A. Roniotis, C. Farmaki, I. Karatzanis, and K. Marias. Evaluation framework for the multilevel macroscopic models of solid tumor growth in the glioma case. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages 6809–6812. IEEE, 2010.
E. Skounakis, C. Farmaki, V. Sakkalis, A. Roniotis, K. Banitsas, N. Graf, and K. Marias. Doctoreye: a clinically driven multifunctional platform, for accurate processing of tumors in medical images. Open Medical Informatics Journal, 4:105–115, 2010.
J.H. Thrall. Biomarkers in Imaging: Realizing Radiologys Future. Radiology, 227:633–638, 2003.
P. Viola and W.M. Wells III. Alignment by maximization of mutual information. In Computer Vision, 1995. Proceedings., Fifth International Conference on, pages 16–23. IEEE, 1998.
C. Xu and J.L. Prince. Gradient vector flow: A new external force for snakes. In cvpr, page 66. Published by the IEEE Computer Society, 1997.
Jonathan Zepp, Norbert Graf, Emmanouil Skounakis, Rainer Bohle, Eckart Meese, Holger Stenzhorn, Yoo-Jin Kim, Christina Farmaki, Vangelis Sakkalis, Wolfgang Reith, Georgios Stamatakos, and Konstantinos Marias. Tumor segmentation: The impact of standardized signal intensity histograms in glioblastoma. In 4th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation, Athens, Greece, September 8–9, 2010.
K.H. Zou, S.K. Warfield, A. Bharatha, C. Tempany, M.R. Kaus, S.J. Haker, W.M. Wells III, F.A. Jolesz, and R. Kikinis. Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports. Academic Radiology, 11(2):178–189, 2004.
Acknowledgments
This work is supported by the European Commission under the project “TUMOR: Transatlantic Tumour Model Repositories” (FP7-ICT-2009.5.4-247754). The authors would like to thank C. Farmaki, E. Skounakis, A. Roniotis and K. Mavrigiannakis for their scientific work contributions to the presented implemented methods and tools.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Marias, K., Sakkalis, V., Graf, N. (2012). A Framework for Multimodal Imaging Biomarker Extraction with Application to Brain MRI. In: Pardalos, P., Xanthopoulos, P., Zervakis, M. (eds) Data Mining for Biomarker Discovery. Springer Optimization and Its Applications(), vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2107-8_6
Download citation
DOI: https://doi.org/10.1007/978-1-4614-2107-8_6
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4614-2106-1
Online ISBN: 978-1-4614-2107-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)