Skip to main content

EEG Features as Biomarkers for Discrimination of Preictal States

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 65))

Abstract

The aim of this study is the selection of the most relevant features of electroencephalograms (EEG) for classification and clustering of preictal states. First, a sum of 312 time series features were computed on consecutive segments of preictal EEG (simple statistical measures, linear and nonlinear measures), where some of them regard different method specific parameters. The efficiency of three methods for feature selection was assessed, i.e., the Forward Sequential Selection (FSS), Support Vector Machines with Recursive Feature Elimination (SVM-RFE) and a MI filter. The classification was applied first to 1000 realizations of simulated data from the Mackey–Glass system at different high dimensional chaotic regimes, and next to 12 scalp early and late preictal EEG recordings of different epileptic patients (about 3 h and half an hour before the seizure onset, respectively). The optimal feature subsets selected by the three feature selection strategies for the same classification problems were found very often to have common features. Based on these feature subsets, classification with k-means partitioning as well as SVM was assessed on test sets of EEG from the same recordings. Feature subsets for each channel and episode or only episode did not classify on the test set as well as a global feature subset of a sufficiently large number of the most frequent features over all channels and episodes. We concluded that a global feature subset of 16 most frequent features can play the role of a biomarker and distinguish early and late preictal states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley & Sons, Inc., New York, NY (1997)

    Google Scholar 

  2. Brown, B.: A new perspective for information theoretic feature selection. In: 12th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 5. Journal of Machine Learning Research (2009)

    Google Scholar 

  3. Brun, M., Sima, C., Hua, J., Lowey, J., Carrol, B., Suh, E., Dougherty, R.E.: Model-based evaluation of clustering validation measures. Pattern Recognition 40, 807 – 824 (2007)

    Article  MATH  Google Scholar 

  4. Bruzzo, A.A., Gesierich, B., Santi, M., Tassinari, C.A., Birbaumer, N., Rubboli, G.: Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. a preliminary study. Neurological Sciences 29(1), 3 – 9 (2008)

    Google Scholar 

  5. de Carvalho, F.A.T., de Souza, R.M.C.R., Chavent, M., Lechevallier, Y.: Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognition Letters 27, 167 – 179 (2006)

    Article  Google Scholar 

  6. Claassen, J.: How I treat patients with EEG patterns on the ictalinterictal continuum in the neuro ICU. Neurocritical Care 11(3), 437 – 444 (2009)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20(3), 273 – 297 (1995)

    MATH  Google Scholar 

  8. D’Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B.: Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Transactions on Biomedical Engineering 50(5), 603 – 615 (2007)

    Article  Google Scholar 

  9. Direito, B., Dourado, A., Sales, F., Vieira, M.: An application for electroencephalogram mining for epileptic seizure prediction. Lecture Notes in Computer Science 5077, 87 – 101 (2008)

    Article  Google Scholar 

  10. Duda, R., Hart, P., Stork, D.: Pattern Classification, second edn. Wiley-Interscience (2001)

    Google Scholar 

  11. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189 – 208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greene, B.R., Faul, S., Marnane, W.P., Lightbody, G., Korotchikova, I., Boylan, G.B.: A comparison of quantitative EEG features for neonatal seizure detection. Clinical Neurophysiology 119(6), 1248 – 1261 (2008)

    Article  Google Scholar 

  13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Springer-Verlag, New York, NY (2001)

    MATH  Google Scholar 

  15. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31, 277 – 283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, J., Gao, J., Principe, J.: Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size. IEEE Transactions on Biomedical Engineering 53(12), 2606 – 2609 (2006)

    Article  Google Scholar 

  17. Iasemidis, L., Pardalos, P., Shiau, D.S., Chaovalitwongse, W., Narayanan, K., Kumar, S., Carney, P., Sackellares, J.: Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Journal of Optimization Methods and Software 18(1), 81 – 104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 153 – 158 (1997)

    Article  Google Scholar 

  19. Jain, K.K.: The Handbook of Biomarkers, first edn. Springer, NY,Dordrecht Heidelberg London (2010)

    Book  Google Scholar 

  20. Jouny, C.C., Franaszczuk, P.J., Bergey, G.K.: Characterization of epileptic seizure dynamics using Gabor atom density. Clinical Neurophysiology 114(3), 426–437 (2003)

    Article  Google Scholar 

  21. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  22. Kugiumtzis, D.: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length. Physica D 95, 13 – 28 (1996)

    Article  MATH  Google Scholar 

  23. Kugiumtzis, D., Papana, A., Tsimpiris, A., Vlachos, I., Larsson, P.G.: Time series feature evaluation in discriminating preictal EEG states. Lecture Notes in Computer Science 4345, 298–310 (2006)

    Article  Google Scholar 

  24. Kugiumtzis, D., Vlachos, I., Papana, A., Larsson, P.G.: Assessment of measures of scalar time series analysis in discriminating preictal states. International Journal of Bioelectromagnetism 9(3), 134–145 (2007)

    Google Scholar 

  25. Liao, T.W.: Clustering of time series data—a survey. Pattern Recognition 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  26. Liu, H., Liu, L., Zhang, H.: Feature selection using mutual information: An experimental study. In: T.B. Ho, Z.H. Zhou (eds.) PRICAI 2008: Trends in Artificial Intelligence, Lecture Notes in Computer Science, vol. 5351, pp. 235–246. Springer Berlin / Heidelberg (2008)

    Google Scholar 

  27. Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman and Hall, CRC Press (2008)

    Google Scholar 

  28. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287 (1977)

    Article  Google Scholar 

  29. Marwan, N., Romano, C.M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Physics Reports 438(5-6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  30. Meisler, M., E., J., O’Brien, E., Sharkey, M.: Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. The Journal of Physiology 588(11), 1841 – 1848 (2010)

    Google Scholar 

  31. Oyegbile, O., Bhattacharya, A., Seidenberg, M., Hermann, P.: Quantitative MRI biomarkers of cognitive morbidity in temporal lobe epilepsy. Epilepsia 47(1), 143 – 152 (2006)

    Article  Google Scholar 

  32. Raymer, M., Punch, W., Goodman E.D.and Kuhn, L., Jain, A.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation 4, 164 – 171 (2000)

    Google Scholar 

  33. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507 – 2517 (2007)

    Article  Google Scholar 

  34. Schelter, B., Winterhalder, M., Feldwisch, H., Drentrup, G., Wohlmuth, J., Nawrath, J., Brandt, A., Schulze-Bonhage, A., Timmer, J.: Seizure prediction: The impact of long prediction horizons. Epilepsy Research 73, 213 – 217 (2007)

    Article  Google Scholar 

  35. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, New York (2009)

    MATH  Google Scholar 

  36. Tsimpiris, A., Kugiumgis, D.: Feature selection for classification of oscillating time series. Expert Systems, doi:10.1111/j.1468-0394.2011.00605.x (2011)

    Google Scholar 

  37. Xu, G., Wang, J., Q, Z., Zhu, J.: An epileptic seizure prediction algorithm from scalp EEG based on morphological filter and Kolmogorov complexity. Lecture Notes in Computer Science 4561, 736 – 746 (2007)

    Google Scholar 

  38. Yum, M.K., Jung, K.Y., Kang, H.C., Kim, H.D., Shon, Y.M., Kang, J.K., Lee, I.K., Park, K.J., Kwon, O.Y.: Effect of a ketogenic diet on EEG: Analysis of sample entropy. Seizure-European Journal Of Epilepsy 17(6), 561–566 (2008)

    Article  Google Scholar 

  39. Zaffalon, M., Hutter, M.: Robust feature selection by mutual information distributions. In: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002), pp. 577 – 584. Morgan Kaufmann (2002)

    Google Scholar 

Download references

Acknowledgements

We thank Pål G. Larsson from the National Center of Epilepsy of Norway for providing the EEG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kugiumtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tsimpiris, A., Kugiumtzis, D. (2012). EEG Features as Biomarkers for Discrimination of Preictal States. In: Pardalos, P., Xanthopoulos, P., Zervakis, M. (eds) Data Mining for Biomarker Discovery. Springer Optimization and Its Applications(), vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2107-8_3

Download citation

Publish with us

Policies and ethics