Skip to main content

Bone Reaction to Implants

  • Chapter
  • First Online:
Book cover Principles of Bone Regeneration

Abstract

Endosseous insertion of an artificial orthopedic or dental material induces an extensive tissue reaction at the implant–bone interface. Formation of a bone–implant attachment has been regularly reported. Bone repair in these instances is portrayed in several patterns. Healing depends on systemic and local conditions, inter alia, bone status, surgical technique, implant surface, biomechanical properties, and forces used. Osseointegration is defined as a direct structural bonding between bone tissue and implant surface. Clinically, such implant attachment produces a firm, asymptomatic fixation maintained in bone under functional loading. In other instances, healing is completed by fibro-integration, namely, implants are surrounded by fibrous connective tissue, showing an evident clinical mobility when loaded [1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100

    Article  Google Scholar 

  2. Albrektsson T, Branemark P-I, Hansson H-A, Lindström J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to implant anchorage in man. Acta Orthop Scand 52:155–170

    Article  CAS  Google Scholar 

  3. Branemark PI (1985) Introduction to osseointegration. In: Branemark P-I, Zarb GA, Albrektsson T (eds) Tissue integrated prostheses. Quintessence Publishing, Chicago, pp 11–76

    Google Scholar 

  4. Steinemann SG, Eulenberger J, MaeuslI PA, Schroeder A (1989) Adhesion of bone to titanium. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performance of biomaterials. Elsevier, Amsterdam, pp 409–414

    Google Scholar 

  5. Zarb GA, Albrektsson T (1991) Osseointegration: a requiem for the periodontal ligament? Int J Periodont Rest Dent 11:88–91

    Google Scholar 

  6. Natiella JR, Armitage JE, Meenaghan MA, Greene GW (1974) Tissue response to dental implants protruding through mucous membrane. Oral Sci Rev 5:85–105

    Google Scholar 

  7. Esposito M, Hirsch J-M, Lekholm U, Thomsen P (1998) Biological factors contributing to failures of osseointegrated oral implants (I) Success criteria and epidemiology. Eur J Oral Sci 106:527–551

    Article  CAS  Google Scholar 

  8. Adell R, Lekholm U, Rockler B, Branemark PI (1981) 15-year study of osseo-integrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10:387–416

    Article  CAS  Google Scholar 

  9. Nevins M, Langer B (1993) The successful application of osseointegrated implants to the posterior jaw: a long-term retrospective study. Int J Oral Maxillofac Implants 8:423–428

    Google Scholar 

  10. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen J (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 16:1–132

    CAS  Google Scholar 

  11. Lazzara R, Siddiqui AA, Binon P, Feldman SA, Weiner R, Philipps R, Gonshor A (1996) Retrospective multicenter analysis of 31 endosseous dental implants placed over a 5 year period. Clin Oral Implants Res 7:73–83

    Article  CAS  Google Scholar 

  12. Wittenberg RH, Shea M, Swartz BA, Lee SK, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16:647–652

    Article  CAS  Google Scholar 

  13. Shalabi MM, Wolke JG, Jansen JA (2006) The effects of implant surface roughness and ­surgical technique on implant fixation in an in vitro model. Clin Oral Implants Res 17(2):172–178

    Article  Google Scholar 

  14. Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. A model study in the dog. Clin Oral Implants Res 14:251–262

    Article  Google Scholar 

  15. Franchi M, Bacchelli B, Martini D, De Pasquale V, Orsini E, Ottani V, Fini M, Giavaresi G, Giardino R, Ruggeri A (2004) Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 25:2239–2246

    Article  CAS  Google Scholar 

  16. Futami T, Fujii N, Ohnishi H, Taguchi N, Kusakari H, Ohshima H, Maeda T (2000) Tissue response to titanium implants in the rat maxilla: ultrastructural and histochemical observations of the bone titanium interface. J Periodontol 71:287–298

    Article  CAS  Google Scholar 

  17. Shirakura M, Fujii N, Ohnishi H, Taguchi Y, Ohshima H, Nomura S, Maeda T (2003) Tissue response to titanium implantation in the rat maxilla, with special reference to the effects of surface conditions on bone formation. Clin Oral Implants Res 14:687–696

    Article  Google Scholar 

  18. Franchi M, Orsini E, Trire A, Quaranta M, Martini D, Piccari G, Ruggeri A, Ottani V (2004) Osteogenesis and morphology of the peri-implant bone facing dental implants. Scientific World Journal 4:1083–1095

    Article  Google Scholar 

  19. Cameron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10:259–299

    Article  Google Scholar 

  20. Sandborn PM, Cook SD, Spires WP, Kesters MA (1989) Tissue response to porous-coated implants lacking initial bone apposition. J Arthroplasty 3:337–346

    Article  Google Scholar 

  21. Carter DR, Giori NJ (1991) In: Davies JE, Albrektsson T (eds) Effect of mechanical stress on tissue differentiation in the bony implant bed, vol 2. University of Toronto Press, Buffalo, pp 367–375

    Google Scholar 

  22. Fini M, Giavaresi G, Torricelli P, Corsari V, Giardino R, Nicolini A, Carpi A (2004) Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 58:487–493

    Article  CAS  Google Scholar 

  23. Listgarten MA (1996) Soft and hard tissue response to endosseous dental implants. Anat Rec 245:410–425

    Article  CAS  Google Scholar 

  24. Kasemo B, Lausmaa J (1991) The biomaterial-tissue interface and its analogues in surface science and technology. In: Davies JE, Albrektsson T (eds) The bone-biomaterial interface, vol 1. University of Toronto Press, Toronto, pp 19–32

    Google Scholar 

  25. Davies JE (1996) In vitro modelling of the bone/implant interface. Anat Rec 245:426–445

    Article  CAS  Google Scholar 

  26. Park JY, Davies JE (2000) Red blood cell and platelet interactions with titanium implant ­surfaces. Clin Oral Implants Res 11:530–539

    Article  CAS  Google Scholar 

  27. Sela MN, Badihi L, Rosen G, Steinberg D, Kohavi D (2007) Adsorption of human plasma proteins to modified titanium surfaces. Clin Oral Implants Res 18(5):630–638, PMID:17484735

    Article  Google Scholar 

  28. Woo KM, Seo J, Zhang R, Ma PX (2007) Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 28:2622–2630

    Article  CAS  Google Scholar 

  29. Mata A, Su X, Fleischman AJ, Roy S, Banks BA, Miller SK (2003) Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins. IEEE Trans Nanobiosci 2:287–294

    Article  Google Scholar 

  30. Dean JW 3rd, Culbertson KC, D’Angelo AM (1995) Fibronectin and Laminin enhance gingival cell attachment to dental implant surfaces in vitro. Int J Oral Maxillofac Implants 6:721–728

    Google Scholar 

  31. Winnard RG, Gerstenfeld LC, Toma CD, Franceschi RT (1995) Fibronectin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts. J Bone Miner Res 12:1969–1977

    Google Scholar 

  32. Garcia AJ, Reyes CD (2005) Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 5:407–413

    Google Scholar 

  33. Globus RK, Doty SB, Lull JC, Holmuhamedov E, Humphries MJ, Damsky CH (1998) Fibronectin is a survival factor for differentiated osteoblasts. J Cell Sci 111:1385–1393

    CAS  Google Scholar 

  34. Owens MR, Cimino CD (1982) Synthesis of fibronectin by the isolated perused rat liver. Blood 6:1305–1309

    Google Scholar 

  35. Schneider G, Burridge K (1994) Formation of focal adhesions by osteoblasts adhering to different substrata. Exp Cell Res 1:264–269

    Article  Google Scholar 

  36. Toworfe GK, Composto RJ, Adams CS, Shapiro IM, Ducheyne P (2004) Fibronectin ­adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J Biomed Mater Res A 3:449–461

    Article  Google Scholar 

  37. Sauberlich S, Klee D, Richter EJ, Hocker H, Spiekermann H (1999) Cell culture tests for assessing the tolerance of soft tissue to variously modified titanium surfaces. Clin Oral Implants Res 5:379–393

    Article  Google Scholar 

  38. Scheideler L, Geis-Gerstorfer J, Kern D, Pfeiffer F, Rupp F, Weber H et al (2003) Investigation of cell reactions to microstructured implant surfaces. Mater Sci Eng C 23:455–459

    Article  Google Scholar 

  39. Jimbo R, Sawase T, Shibata Y, Hirata K, Hishikawa Y, Tanaka Y, Bessho K, Ikeda T, Atsuta M (2007) Enhanced Osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells. Biomaterials 28(24):3469–3477

    Article  CAS  Google Scholar 

  40. Tsai JA, Lagumdzija A, Stark A, Kindmark H (2007) Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem Funct 25:245–249

    Article  CAS  Google Scholar 

  41. Yang Y, Dennison D, Ong JL (2005) Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int J Oral Maxillofac Implants 20:187–192

    Google Scholar 

  42. Kern T, Yang Y, Glover R, Ong JL (2005) Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment. Implant Dent 14:70–76

    Article  Google Scholar 

  43. Protivinsky J, Appleford M, Strnad J, Helebrant A, Ong JL (2007) Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Int J Oral Maxillofac Implants 22:542–550

    Google Scholar 

  44. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF (2001) Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251

    Article  CAS  Google Scholar 

  45. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD (2004) Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 70:361–369

    Article  CAS  Google Scholar 

  46. Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP (2004) Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials 25:625–631

    Article  CAS  Google Scholar 

  47. de Oliveira PT, Nanci A (2004) Nanotexturing of titanium-based surfaces up regulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25:403–413

    Article  Google Scholar 

  48. Nanci A, McCarthy GF, Zalzal S, Clokie CML, Warshawsky H, McKe MD (1994) Tissue response to titanium implants in the rat tibia: ultrastructural, immunocytochemical and lectin-cytochemical characterization of the bone-titanium interface. Cell Mater 4:1–30

    CAS  Google Scholar 

  49. Murai K, Takeshita F, Ayukawa Y, Kiyoshima T, Suetsugu T, Tanaka T (1996) Light and electron microscopic studies of bone-titanium interface in the tibiae of young and mature rats. J Biomed Mater Res 30:523–533

    Article  CAS  Google Scholar 

  50. Meyer U, Joos U, Mythili J, Stamn T, Hohoff A, Fillies T, Stratmann U, Wiesman HP (2004) Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 25:1959–1967

    Article  CAS  Google Scholar 

  51. Puleo DA, Nanci A (1999) Understanding and controlling the bone implant interface. Biomaterials 20:2311–2321

    Article  CAS  Google Scholar 

  52. Shen X, Roberts E, Peel SAF, Davies JE (1993) Organic extracellular matrix components at the bone cell/substratum interface. Cell Mater 3:257–272

    CAS  Google Scholar 

  53. Peel SAF (1995) The influence of substratum modification on interfacial bone formation in vitro. Ph.D. Thesis, University of Toronto

    Google Scholar 

  54. Gorsky JP (1998) Is all bone the same? Distinctive distributions and properties of non-collagenous matrix proteins in lamellar vs. woven bone imply the existence of different underlying osteogenic mechanisms. Crit Rev Oral Biol Med 9:201–223

    Article  Google Scholar 

  55. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67:932–949

    Google Scholar 

  56. Rosengren A, Johanson BR, Danielsen N, Thomsen P, Ericson LE (1996) Immunohistochemical studies on the distribution of albumin, fibrinogen, fibronectin, IgG and collagen around PTFE and titanium implants. Biomaterials 17:1779–1786

    Article  CAS  Google Scholar 

  57. Pritchard JJ (1972) General histology of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, vol 120. Academic, New York

    Google Scholar 

  58. Parfitt AM (1983) The physiology and clinical significance of bone histomorphometric data. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC, Boca Raton, pp 143–223

    Google Scholar 

  59. Villanueva AR, Sypitkowski C, Parfitt AM (1986) A new method for identification of cement lines in undecalcified, plastic embedded sections of bone. Stain Technol 61:83–88

    CAS  Google Scholar 

  60. Frasca P (1981) Scanning electron microscopy study of ground substance in the cement lines, resting lines, hypercalcified rings and reversal lines of human cortical bone. Acta Anat 109:115–121

    Article  CAS  Google Scholar 

  61. McKee MD, Nanci A (1993) Ultrastrucutural, Cytochemical and immunocytochemical studies on bone and its interface. Cell Mater 3:219–243

    Google Scholar 

  62. Butler WT (1989) The nature and significance of osteopontin. Connect Tissue Res 23:123–136

    Article  CAS  Google Scholar 

  63. Linder L (1985) High-resolution microscopy of the implant-tissue interface. Acta Orthop Scand 56:269–272

    Article  CAS  Google Scholar 

  64. Albrektsson T, Hansson HA (1986) An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials 7:201–205

    Article  CAS  Google Scholar 

  65. Davies J, Lowenberg B, Shiga A (1990) The bone-titanium interface in vitro. J Biomed Mater Res 24:1289–1306

    Article  CAS  Google Scholar 

  66. Probst A, Spiegel HU (1997) Cellular mechanisms of bone repair. J Invest Surg 10:77–86

    Article  CAS  Google Scholar 

  67. Roberts WE (1988) Bone tissue interface. J Dent Educ 52:804–809

    CAS  Google Scholar 

  68. Linder L, Obrant K, Boivin G (1989) Osseointegration of metallic implants II. Transmission electron microscopy in the rabbit. Acta Orthop Scand 60:135–139

    Article  CAS  Google Scholar 

  69. Clokie CML, Warshawsky H (1995) Morphologic and radioautographic studies of bone formation in relation to titanium implants using rat tibia as a model. Int J Oral Maxillofac Implants 10:155–165

    CAS  Google Scholar 

  70. Davies JE, Hosseini MM (2000) Histodynamics of endosseous wound healing. In: Davies JE (ed) Bone engineering. Em Squared Inc, Toronto, pp 1–14

    Google Scholar 

  71. Davies JE, Chernecky R, Lowenberg B, Shiga A (1991) Deposition and resorption of calcified matrix in vitro by rat bone marrow cells. Cells Mater 1:3–15

    Google Scholar 

  72. von Ebner (Ritter von Rosenheim) V (1875) Über den feineren Bau der Knochensubstanz (On the fine structure of bone) SB Akad Wiss Math Nat Kl Abt III 72:49138

    Google Scholar 

  73. Morinaga K, Kido H, Sato A, Watazu A, Matsuura M (2009) Chronological changes in the ultrastructure of titanium-bone interfaces: analysis by light microscopy, transmission electron microscopy, and micro-computed tomography. Clin Implant Dent Relat Res 11:59–68

    Article  Google Scholar 

  74. Schwartz Z, Lohmann CH, Vocke AK, Sylvia VL, Cochran DL, Dean DD, Boyan BD (2001) Osteoblast response to titanium surface roughness and 1alpha,25-(OH)(2)D(3) is mediated through the mitogen-activated protein kinase (MAPK) pathway. J Biomed Mater Res 56:417–426

    Article  CAS  Google Scholar 

  75. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A (2000) Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 15:779–784

    CAS  Google Scholar 

  76. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL (2002) Osteoblastmediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 71:519–529

    Article  CAS  Google Scholar 

  77. Lohmann CH, Sagun R Jr, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z (1999) Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)(2)D(3) through regulation of phospholipase A(2) activity and activation of protein kinase A. J Biomed Mater Res 47:139–151

    Article  CAS  Google Scholar 

  78. Park JY, Gemmell CH, Davies JE (2001) Platelets interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22:2671–2682

    Article  CAS  Google Scholar 

  79. Soskolne WA, Cohen S, Sennerby L, Wennebrg A, Shapira L (2002) The effect of titanium surface roughness on the adhesion of monocytes and their secretion of TNF-a and PGE 2. Clin Oral Implants Res 13:86–93

    Article  Google Scholar 

  80. Albrektsson T, Wennerberg A (2004) Oral implant surfaces: Part 2- review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17:544–564

    Google Scholar 

  81. Zechner W, Tangl S, Furst G, Tepper G, Thams U, Mailath G, Watzek G (2003) Ossoeus healing characteristics of three different implant types. Clin Oral Implants Res 14:150–157

    Article  Google Scholar 

  82. Cook SD, Thomas KA, Kay JF, Jarcho M (1988) Hydroxyapatite coated porous titanium for use as an orthopaedic biologic attachment system. Clin Orthop 230:303–312

    CAS  Google Scholar 

  83. Shirakura M, Fujii N, Ohnishi H, Taguchi Y, Ohshima H, Nomura S, Maeda T (2003) Tissue response to titanium implantation in the rat maxilla, with special reference to the effect of surface conditions on bone formation. Clin Oral Implant Res 14:687–696

    Article  Google Scholar 

  84. Ducheyne P, Healy KE (1988) The effect of plasma sprayed calcium phosphate ceramic coatings on the metal ion release from titanium and cobalt chromium alloys. J Biomed Mater Res 22:1137–1163

    Article  CAS  Google Scholar 

  85. Martini D, Fini M, Franchi M, De Pasquale V, Bacchelli B, Gamberoni M, Tinti A, Taddei P, Giavaresi G, Ottani V, Raspanti M, Guizzard S, Ruggeri A (2003) Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials 4:1309–1316

    Article  Google Scholar 

  86. Jones FH (2001) Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep 42:75–205

    Article  CAS  Google Scholar 

  87. Wheeler SL (1996) Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 11:340–350

    CAS  Google Scholar 

  88. Geesink RG, de Groot K, Klein CP (1988) Bonding of bone to apatite coated implants. J Bone Joint Surg Br 70:17–22

    CAS  Google Scholar 

  89. Chang YL, Lew D, Park JB, Keller J (1999) Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J Oral Maxillofac Surg 57:1096–1108

    Article  CAS  Google Scholar 

  90. Galoi L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603

    Google Scholar 

  91. Park YS, Yi KY, Lee IS, Han CH, Jumg YC (2005) The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 20:31–38

    Google Scholar 

  92. Vercaigne S, Wolke JGC, Naert I, Jansen JA (1998) The effect of titanium plasma-sprayed implants on trabecular bone healing in the goat. Biomaterials 19:1093–1099

    Article  CAS  Google Scholar 

  93. Hansson S (1999) The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 10:394–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kohavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kohavi, D. (2012). Bone Reaction to Implants. In: Sela, J., Bab, I. (eds) Principles of Bone Regeneration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2059-0_9

Download citation

Publish with us

Policies and ethics