Skip to main content

The Immunobiology of Human Papillomavirus Associated Oncogenesis

  • Chapter
  • First Online:

Abstract

The lifecycle of oncogenic HPV begins with entry into the basal cells of a target anogenital epithelium. Thereafter, virus production is entirely within and dependent on the differentiation of the epithelium which provides for the necessary coordinated cellular and viral gene expression leading to accumulation of infectious virions in the terminally differentiated cells. Natural immune control of such HPV infection derives initially from activation of innate immune mechanisms and these stimulate adaptive immunity such as specific cytotoxic T cells recognizing viral proteins E2, E6 and E7 that can clear the virally infected cells. About 50% of women who clear their infections also make neutralising antibodies but the levels are not necessarily protective against a subsequent infection by the same HPV type and are never therapeutic. Oncogenic HPVs have several immune evasion strategies which together with a lifecycle involving little or no damage in the epithelial located infection can allow for persistent infection, which is the major risk factor for development of intraepithelial neoplasia. Oncogenic HPV infection is necessary but insufficient for development of a cervical cancer and additional genetic changes are acquired over time through selection including those that allow for escape from immune surveillance. This review describes the current understanding natural immune control and identifies the unique hurdles in prophylactic and therapeutic vaccine design for HPV compared to other common viral pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amanna IJ, Slifka MK (2010) Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol Rev 236:125–138

    Article  PubMed  CAS  Google Scholar 

  • Apple RJ, Becker TM, Wheeler CM, Erlich HA (1995) Comparison of human leukocyte antigen DR-DQ disease associations found with cervical dysplasia and invasive cervical carcinoma. J Natl Cancer Inst 87(6):427–436

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  • Barnard P, McMillan NA (1999) The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology 259(2):305–313

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol 27:551–589

    Article  PubMed  CAS  Google Scholar 

  • Bhat P, Mattarollo SR, Gosmann C, Frazer IH, Leggatt GR (2011) Regulation of immune responses to HPV infection and during HPV-directed immunotherapy. Immunol Rev 239(1):85–98

    Article  PubMed  CAS  Google Scholar 

  • Bonagura VR, Hatam L, DeVoti J, Zeng F, Steinberg BM (1999) Recurrent respiratory papillomatosis: altered CD8(+) T-cell subsets and T(H)1/T(H)2 cytokine imbalance. Clin Immunol 93(3):302–311

    Article  PubMed  CAS  Google Scholar 

  • Bonagura VR, Vambutas A, DeVoti JA, Rosenthal DW, Steinberg BM, Abramson AL et al (2004) HLA alleles, IFN-gamma responses to HPV-11 E6, and disease severity in patients with recurrent respiratory papillomatosis. Hum Immunol 65(8):773–782

    Article  PubMed  CAS  Google Scholar 

  • Bontkes HJ, Walboomers JM, Meijer CJ, Helmerhorst TJ, Stern PL (1998) Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression. Lancet 351(9097):187–188

    Article  PubMed  CAS  Google Scholar 

  • Bontkes HJ, de Gruijl TD, van den Muysenberg AJ, Verheijen RH, Stukart MJ, Meijer CJ et al (2000) Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes in women with cervical neoplasia. Int J Cancer 88(1):92–98

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L et al (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26(Suppl 10):K1–K16

    Article  PubMed  Google Scholar 

  • Brady CS, Bartholomew JS, Burt DJ, Duggan-Keen MF, Glenville S, Telford N et al (2000) Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens 55(5):401–411

    Article  PubMed  CAS  Google Scholar 

  • Buck CB, Thompson CD (2007) Production of papillomavirus-based gene transfer vectors. Curr Protoc Cell Biol Chapter 26:Unit 26.1

    Google Scholar 

  • Chang YE, Laimins LA (2000) Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74(9):4174–4182

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Kang JW, Cho M, Cho CW, Lee S, Choe YK et al (2001) Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett 501(2–3):139–145

    Article  PubMed  CAS  Google Scholar 

  • Clerici M, Merola M, Ferrario E, Trabattoni D, Villa ML, Stefanon B et al (1997) Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst 89(3):245–250

    Article  PubMed  CAS  Google Scholar 

  • Connor JP, Ferrer K, Kane JP, Goldberg JM (1999) Evaluation of Langerhans’ cells in the cervical epithelium of women with cervical intraepithelial neoplasia. Gynecol Oncol 75(1):130–135

    Article  PubMed  CAS  Google Scholar 

  • Conway MJ, Meyers C (2009) Replication and assembly of human papillomaviruses. J Dent Res 88(4):307–317

    Article  PubMed  CAS  Google Scholar 

  • Cruz L, Conway MJ, Meyers C (eds) (2010) Differences in early entry events between high-risk native papillomaviruses. International Papillomavirus Meeting. Montreal, Canada, 2010

    Google Scholar 

  • Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL et al (2010) Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102(7):1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Day PM, Kines RC, Thompson CD, Jagu S, Roden RB, Lowy DR et al (2010) In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 8(3):260–270

    Article  PubMed  CAS  Google Scholar 

  • de Gruijl TD, Bontkes HJ, Stukart MJ, Walboomers JM, Remmink AJ, Verheijen RH et al (1996) T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection. J Gen Virol 77(9):2183–2191

    Article  PubMed  Google Scholar 

  • de Gruijl TD, Bontkes HJ, Walboomers JM, Stukart MJ, Doekhie FS, Remmink AJ et al (1998) Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 58(8):1700–1706

    PubMed  Google Scholar 

  • de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ et al (2004) Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64(15):5449–5455

    Article  PubMed  Google Scholar 

  • DeVoti JA, Steinberg BM, Rosenthal DW, Hatam L, Vambutas A, Abramson AL et al (2004) Failure of gamma interferon but not interleukin-10 expression in response to human papillomavirus type 11 E6 protein in respiratory papillomatosis. Clin Diagn Lab Immunol 11(3):538–547

    PubMed  CAS  Google Scholar 

  • DeVoti JA, Rosenthal DW, Wu R, Abramson AL, Steinberg BM, Bonagura VR (2008) Immune dysregulation and tumor-associated gene changes in recurrent respiratory papillomatosis: a paired microarray analysis. Mol Med 14(9–10):608–617

    PubMed  CAS  Google Scholar 

  • Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538

    Article  PubMed  CAS  Google Scholar 

  • Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110(5):525–541

    Article  CAS  Google Scholar 

  • Duensing S, Munger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109(2):157–162

    Article  PubMed  CAS  Google Scholar 

  • Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS et al (2007) Prevalence of HPV infection among females in the United States. JAMA 297(8):813–819

    Article  PubMed  CAS  Google Scholar 

  • Einstein MH, Cruz Y, El-Awady MK, Popescu NC, DiPaolo JA, van Ranst M et al (2002) Utilization of the human genome sequence localizes human papillomavirus type 16 DNA integrated into the TNFAIP2 gene in a fatal cervical cancer from a 39-year-old woman. Clin Cancer Res 8(2):549–554

    PubMed  CAS  Google Scholar 

  • Einstein MH, Leanza S, Chiu LG, Schlecht NF, Goldberg GL, Steinberg BM et al (2009a) Genetic variants in TAP are associated with high-grade cervical neoplasia. Clin Cancer Res 15(3):1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Einstein MH, Schiller JT, Viscidi RP, Strickler HD, Coursaget P, Tan T et al (2009b) Clinician’s guide to human papillomavirus immunology: knowns and unknowns. Lancet Infect Dis 9(6):347–356

    Article  PubMed  CAS  Google Scholar 

  • Farhat S, Nakagawa M, Moscicki AB (2009) Cell-mediated immune responses to human papillomavirus 16 E6 and E7 antigens as measured by interferon gamma enzyme-linked immunospot in women with cleared or persistent human papillomavirus infection. Int J Gynecol Cancer 19(4):508–512

    Article  PubMed  Google Scholar 

  • Fattorossi A, Battaglia A, Ferrandina G, Buzzonetti A, Legge F, Salutari V et al (2004) Lymphocyte composition of tumor draining lymph nodes from cervical and endometrial cancer patients. Gynecol Oncol 92(1):106–115

    Article  PubMed  CAS  Google Scholar 

  • Fausch SC, Da Silva DM, Rudolf MP, Kast WM (2002) Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol 169(6):3242–3249

    PubMed  CAS  Google Scholar 

  • Frazer IH (2009) Interaction of human papillomaviruses with the host immune system: a well evolved relationship. Virology 384(2):410–414

    Article  PubMed  CAS  Google Scholar 

  • Gambhira R, Karanam B, Jagu S, Roberts JN, Buck CB, Bossis I et al (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 81(24):13927–13931

    Article  PubMed  CAS  Google Scholar 

  • Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S et al (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356(19):1928–1943

    Article  PubMed  CAS  Google Scholar 

  • Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18(2):89–95

    Article  PubMed  CAS  Google Scholar 

  • Giannini SL, Hubert P, Doyen J, Boniver J, Delvenne P (2002) Influence of the mucosal epithelium microenvironment on Langerhans cells: implications for the development of squamous intraepithelial lesions of the cervix. Int J Cancer 97(5):654–659

    Article  PubMed  CAS  Google Scholar 

  • Guess JC, McCance DJ (2005) Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol 79(23):14852–14862

    Article  PubMed  CAS  Google Scholar 

  • Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V et al (2007) TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol 178(5):3186–3197

    PubMed  CAS  Google Scholar 

  • Hatam LJ, Rosenthal DW, DeVoti JA, Lam F, Abramson A, Steinberg BM et al (2008) CD4+Foxp3+CD127+low T-regulatory cells are increased in HPV infected papillomas in patients with Recurrent Respiratory Papillomatosis (RRP). J Allergy Clin Immunol 121:S211

    Article  Google Scholar 

  • Herdman MT, Pett MR, Roberts I, Alazawi WO, Teschendorff AE, Zhang XY et al (2006) Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis 27(11):2341–2353

    Article  PubMed  CAS  Google Scholar 

  • Hildesheim A, Herrero R, Wacholder S, Rodriguez AC, Solomon D, Bratti MC et al (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298(7):743–753

    Article  PubMed  CAS  Google Scholar 

  • Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338(7):423–428

    Article  PubMed  CAS  Google Scholar 

  • Howley PM, Lowy DR (2007) Papillomaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2299–2354

    Google Scholar 

  • Huang LW, Chao SL, Lee BH (2008) Integration of human papillomavirus type-16 and type-18 is a very early event in cervical carcinogenesis. J Clin Pathol 61(5):627–631

    Article  PubMed  Google Scholar 

  • Hubert P, Caberg JH, Gilles C, Bousarghin L, Franzen-Detrooz E, Boniver J et al (2005) E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J Pathol 206(3):346–355

    Article  PubMed  CAS  Google Scholar 

  • Kadish AS, Einstein MH (2005) Vaccine strategies for human papillomavirus-associated cancers. Curr Opin Oncol 17(5):456–461

    Article  PubMed  CAS  Google Scholar 

  • Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2(4):251–262

    Article  PubMed  CAS  Google Scholar 

  • Kalinski P, Hilkens CM, Wirerenga EA, Kapsenberg ML (1999) T-cell priming by type 1 and type 2 polarized dendritic cells: concept of a third signal. Immunol Today 20(12):561–567

    Article  PubMed  CAS  Google Scholar 

  • Keating PJ, Cromme FV, Duggan-Keen M, Snijders PJ, Walboomers JM, Hunter RD et al (1995) Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 72(2):405–411

    Article  PubMed  CAS  Google Scholar 

  • Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 106(48):20458–20463

    Article  PubMed  CAS  Google Scholar 

  • Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191(6):961–976

    Article  PubMed  CAS  Google Scholar 

  • Kyrgiou M, Koliopoulos G, Martin-Hirsch P, Arbyn M, Prendiville W, Paraskevaidis E (2006) Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet 367(9509):489–498

    Article  PubMed  CAS  Google Scholar 

  • Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S et al (1999) The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18(42):5727–5737

    Article  PubMed  CAS  Google Scholar 

  • Molling JW, de Gruijl TD, Glim J, Moreno M, Rozendaal L, Meijer CJ et al (2007) CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121(8):1749–1755

    Article  PubMed  CAS  Google Scholar 

  • Nees M, Geoghegan JM, Munson P, Prabhu V, Liu Y, Androphy E et al (2000) Human papillomavirus type 16 E6 and E7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer Res 60(15):4289–4298

    PubMed  CAS  Google Scholar 

  • Niedergang F, Didierlaurent A, Kraehenbuhl JP, Sirard JC (2004) Dendritic cells: the host Achille’s heel for mucosal pathogens? Trends Microbiol 12(2):79–88

    Article  PubMed  CAS  Google Scholar 

  • Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL (2002) Viral evasion of natural killer cells. Nat Immunol 3(11):1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D et al (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374(9686):301–314

    Article  PubMed  CAS  Google Scholar 

  • Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW et al (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67(1):354–361

    Article  PubMed  CAS  Google Scholar 

  • Poppe WA (ed) (2010) Immune response after natural infection: protection correlates with antibody titre. Eurogin. Monte Carlo, Monaco

    Google Scholar 

  • Richards RM, Lowy DR, Schiller JT, Day PM (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 103(5):1522–1527

    Article  PubMed  CAS  Google Scholar 

  • Roberts S, Young LS (2009) Role of HPV in cervical carcinogenesis. In: Stern PL, Kitchener HC (eds) Vaccines for the prevention of cervical cancer. Oxford University Press, Oxford

    Google Scholar 

  • Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL et al (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13(7):857–861

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DW, Schmidmayerova H, Steinberg BM, DeVoti JA, Hatam L, Vambutas A et al (2005) Recurrent respiratory papillomatosis (RRP): Disease severity associates with enhanced TH2-like dendritic cell chemokine (DC-CK1) plasma expression. J Allergy Clin Immunol 115:S81

    Article  Google Scholar 

  • Rosenthal DW, DeVoti JA, Wu R, Schmidmayerova H, Steinberg BM, Bonagura VR (2006) Recurrent respiratory papillomatosis (RRP): Increased TH2-like chemokine expression. J Allergy Clin Immunol 117:S104

    Article  Google Scholar 

  • Rosenthal DW, DeVoti JA, Schmidmayerova H, Steinberg BM, Bonagura VR (2008) Human Papillomavirus causes a TH2-like chemokine predominance in Recurrent Respiratory Papilloma-totosis (RRP). J Allergy Clin Immunol 121:S15

    Article  Google Scholar 

  • Sadler L, Saftlas A, Wang W, Exeter M, Whittaker J, McCowan L (2004) Treatment for cervical intraepithelial neoplasia and risk of preterm delivery. JAMA 291(17):2100–2106

    Article  PubMed  CAS  Google Scholar 

  • Safaeian M, Porras C, Schiffman M, Rodriguez AC, Wacholder S, Gonzalez P et al (2010) Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and -18 infections. J Natl Cancer Inst 102(21):1653–1662

    Google Scholar 

  • al Saleh W, Giannini SL, Jacobs N, Moutschen M, Doyen J, Boniver J et al (1998) Correlation of T-helper secretory differentiation and types of antigen-presenting cells in squamous intraepithelial lesions of the uterine cervix. J Pathol 184(3):283–290

    Article  Google Scholar 

  • Schwarz TF (2008) AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev Vaccines 7(10):1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77(24):13125–13135

    Article  PubMed  CAS  Google Scholar 

  • Stanley MA (2007) HPV—a master at avoiding the host’s defences. HPV Today 11:1–16

    Google Scholar 

  • Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    Article  PubMed  CAS  Google Scholar 

  • Stern PL (2009) Immune control of HPV infection in cervical neoplasia. In: Stern PL, Kitchener HC (eds) Vaccines for the prevention of cervical cancer. Oxford University Press, Oxford

    Google Scholar 

  • Strickler HD, Burk RD, Fazzari M, Anastos K, Minkoff H, Massad LS et al (2005) Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst 97(8):577–586

    Article  PubMed  Google Scholar 

  • Tay SK, Jenkins D, Maddox P, Campion M, Singer A (1987) Subpopulations of Langerhans’ cells in cervical neoplasia. Br J Obstet Gynaecol 94(1):10–15

    Article  PubMed  CAS  Google Scholar 

  • Trimble CL, Clark RA, Thoburn C, Hanson NC, Tassello J, Frosina D et al (2010) Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. J Immunol 185(11):7107–7114

    Article  PubMed  CAS  Google Scholar 

  • Trottier H, Ferreira S, Thomann P, Costa MC, Sobrinho JS, Prado JC et al (2010) Human papillomavirus infection and reinfection in adult women: the role of sexual activity and natural immunity. Cancer Res 70(21):8569–8577

    Article  PubMed  CAS  Google Scholar 

  • van der Burg SH, Ressing ME, Kwappenberg KM, de Jong A, Straathof K, de Jong J et al (2001) Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer 91(5):612–618

    Article  PubMed  Google Scholar 

  • van der Burg SH, Piersma SJ, de Jong A, van der Hulst JM, Kwappenberg KM, van den Hende M et al (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA 104(29):12087–12092

    Article  PubMed  Google Scholar 

  • van Seters M, van Beurden M, ten Kate FJ, Beckmann I, Ewing PC, Eijkemans MJ et al (2008) Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N Engl J Med 358(14):1465–1473

    Article  PubMed  Google Scholar 

  • Viscidi RP, Schiffman M, Hildesheim A, Herrero R, Castle PE, Bratti MC et al (2004) Seroreactivity to human papillomavirus (HPV) types 16, 18, or 31 and risk of subsequent HPV infection: results from a population-based study in Costa Rica. Cancer Epidemiol Biomarkers Prev 13(2):324–327

    Article  PubMed  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y et al (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Bratti MC, Rodriguez AC, Herrero R, Burk RD, Porras C et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199(1):20–30

    Article  PubMed  CAS  Google Scholar 

  • Winters U, Daayana S, Lear JT, Tomlinson AE, Elkord E, Stern PL et al (2008) Clinical and immunologic results of a phase II trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia. Clin Cancer Res 14(16):5292–5299

    Article  PubMed  CAS  Google Scholar 

  • Yu KJ, Bashirova A, Madeleine MM, Cheng J, Johnson LG, Schwartz SM et al (2007) Evaluation of the association with cervical cancer of polymorphisms in syndecan-1, a heparan sulfate proteoglycan involved with viral cell entry. Cancer Epidemiol Biomarkers Prev 16(11):2504–2508

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS et al (2003) The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology 310(1):100–108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stern, P.L., Einstein, M.H. (2012). The Immunobiology of Human Papillomavirus Associated Oncogenesis. In: Borruto, F., De Ridder, M. (eds) HPV and Cervical Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1988-4_3

Download citation

Publish with us

Policies and ethics