Skip to main content

Perspectives on Therapeutic HPV Vaccines: Where Are We Now?

  • Chapter
  • First Online:
  • 2062 Accesses

Abstract

The role of Human Papillomavirus (HPV) as the key etiological factor for cervical cancer has spurred the development of preventive and therapeutic HPV vaccines for the control of HPV-associated malignancies. While the commercial preventive HPV vaccines Gardasil and Cervarix represent promising breakthroughs for the control of HPV-associated cancers through prevention, they do not exert therapeutic effects on existing lesions. In addition, their prohibitive cost and limited availability in developing countries, which account for >80% of cervical cancers, make it unlikely for the current preventive HPV vaccines to generate an immediate impact on the prevalence of cervical cancer. Thus, there is an urgent need for therapeutic HPV vaccines. HPV E6 and E7 oncoproteins represent ideal targets for therapeutic intervention because of their constitutive expression in HPV-associated tumors and their crucial role in the induction and maintenance of HPV-associated disease. This chapter focuses on the clinical development of various therapeutic HPV vaccines targeting E6 and/or E7 antigens, with perspectives on their future prospects for the control of HPV-associated malignancies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albarran YCA, de la Garza A, Cruz Quiroz BJ et al (2007) MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: a phase I/II study. BioDrugs 21:47–59

    Article  Google Scholar 

  • Alvarez-Salas LM (2008) Amolimogene bepiplasmid, a DNA-based therapeutic encoding the E6 and E7 epitopes from HPV, for cervical and anal dysplasia. Curr Opin Mol Ther 10:622–628

    PubMed  CAS  Google Scholar 

  • Baldwin PJ, van der Burg SH, Boswell CM et al (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9:5205–5213

    PubMed  CAS  Google Scholar 

  • Bellone S, Pecorelli S, Cannon MJ, Santin AD (2007) Advances in dendritic-cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther 7:1473–1486

    Article  PubMed  CAS  Google Scholar 

  • Berglund P, Quesada-Rolander M, Putkonen P, Biberfeld G, Thorstensson R, Liljestrom P (1997) Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses 13:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljestrom P (1998) Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 16:562–565

    Article  PubMed  CAS  Google Scholar 

  • Bermudez-Humaran LG, Cortes-Perez NG, Lefevre F et al (2005) A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol 175:7297–7302

    PubMed  CAS  Google Scholar 

  • Best SR, Peng S, Juang CM et al (2009) Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 27:5450–5459

    Article  PubMed  CAS  Google Scholar 

  • Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  PubMed  CAS  Google Scholar 

  • Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739–745

    Article  PubMed  Google Scholar 

  • Bolhassani A, Zahedifard F, Taghikhani M, Rafati S (2008) Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine 26:3362–3370

    Article  PubMed  CAS  Google Scholar 

  • Borysiewicz LK, Fiander A, Nimako M et al (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527

    Article  PubMed  CAS  Google Scholar 

  • Brandsma JL, Shlyankevich M, Su Y, Zelterman D, Rose JK, Buonocore L (2010) Reversal of papilloma growth in rabbits therapeutically vaccinated against E6 with naked DNA and/or vesicular stomatitis virus vectors. Vaccine 28(52):8345–8351

    Article  PubMed  CAS  Google Scholar 

  • Brun JL, et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. American journal of obstetrics and gynecology 204(2):169 e161–168

    Google Scholar 

  • Bubenik J (2008) Genetically modified cellular vaccines for therapy of human papilloma virus type 16 (HPV 16)-associated tumours. Curr Cancer Drug Targets 8:180–186

    Article  PubMed  CAS  Google Scholar 

  • Cassetti MC, McElhiney SP, Shahabi V et al (2004) Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 22:520–527

    Article  PubMed  CAS  Google Scholar 

  • Chang EY, Chen CH, Ji H et al (2000) Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int J Cancer 86:725–730

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Ma B, Pang X, Wu TC, Hung CF (2009) Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer. Mol Ther 17:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Wu TC (1998) Experimental vaccine strategies for cancer immunotherapy. J Biomed Sci 5:231–252

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Wang TL, Hung CF et al (2000a) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 60:1035–1042

    PubMed  CAS  Google Scholar 

  • Chen CH, Wang TL, Hung CF, Pardoll DM, Wu TC (2000b) Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine 18:2015–2022

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Lin CW, Tsao YP, Chen SL (2004) Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-oligodeoxynucleotide can eliminate tumor growth in C57BL/6 mice. J Virol 78:1333–1343

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Yan W, Huang L (2008) A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol Immunother 57:517–530

    Article  PubMed  CAS  Google Scholar 

  • Chen CA, Chang MC, Sun WZ et al (2009) Noncarrier naked antigen-specific DNA vaccine generates potent antigen-specific immunologic responses and antitumor effects. Gene Ther 16:776–787

    Article  PubMed  CAS  Google Scholar 

  • Cheng WF, Hung CF, Chai CY et al (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108:669–678

    PubMed  CAS  Google Scholar 

  • Cheng WF, Hung CF, Hsu KF et al (2002) Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther 13:553–568

    Article  PubMed  CAS  Google Scholar 

  • Cheng WF, Chang MC, Sun WZ et al (2008) Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 15:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Chu NR, Wu HB, Wu TC, Boux LJ, Mizzen LA, Siegel MI (2000) Immunotherapy of a human papillomavirus type 16 E7-expressing tumor by administration of fusion protein comprised of Mycobacterium bovis BCG Hsp65 and HPV16 E7. Cell Stress Chaperones 5:401–405

    Article  PubMed  CAS  Google Scholar 

  • Chuang CM, Hoory T, Monie A, Wu A, Wang MC, Hung CF (2009a) Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+ CD25+ T regulatory cells. Vaccine 27:684–689

    Article  PubMed  CAS  Google Scholar 

  • Chuang CM, Monie A, Wu A, Hung CF (2009b) Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci 16:49

    Article  PubMed  CAS  Google Scholar 

  • Cid-Arregui A, Juarez V, zur Hausen H (2003) A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol 77:4928–4937

    Article  PubMed  CAS  Google Scholar 

  • Corona Gutierrez CM, Tinoco A, Navarro T et al (2004) Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther 15:421–431

    Article  PubMed  CAS  Google Scholar 

  • Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM et al (2005) Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target 13:89–98

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Huang L (2005) Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother 54:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  • Daftarian P, Mansour M, Benoit AC et al (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 24:5235–5244

    Article  PubMed  CAS  Google Scholar 

  • Daftarian PM, Mansour M, Pohajdak B et al (2007) Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax encapsulated CTL/T helper peptides. J Transl Med 5:26

    Article  PubMed  CAS  Google Scholar 

  • Davidson EJ, Boswell CM, Sehr P et al (2003) Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 63:6032–6041

    PubMed  CAS  Google Scholar 

  • Davidson EJ, Faulkner RL, Sehr P et al (2004) Effect of TA-CIN (HPV 16 L2E6E7) booster immunization in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 22:2722–2729

    Article  PubMed  CAS  Google Scholar 

  • de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ (2008) Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 57:1569–1577

    Article  PubMed  CAS  Google Scholar 

  • de Jong A, O’Neill T, Khan AY et al (2002) Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine 20:3456–3464

    Article  PubMed  Google Scholar 

  • de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  CAS  Google Scholar 

  • Derkay CS, Smith RJ, McClay J et al (2005) HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann Otol Rhinol Laryngol 114:730–737

    PubMed  Google Scholar 

  • Echchannaoui H, Bianchi M, Baud D, Bobst M, Stehle JC, Nardelli-Haefliger D (2008) Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun 76:1940–1951

    Article  CAS  PubMed  Google Scholar 

  • Einstein MH, Kadish AS, Burk RD et al (2007) Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 106:453–460

    Article  PubMed  CAS  Google Scholar 

  • Eisai (2009) A study of amolimogene (ZYC101a) in patients with high grade cervical intraepithelial lesions of the uterine cervix. http://clinicaltrials.gov/show/NCT00264732. Accessed 23 Nov 2009

  • Feltkamp MC, Smits HL, Vierboom MP et al (1993) Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 23:2242–2249

    Article  PubMed  CAS  Google Scholar 

  • Ferrara A, Nonn M, Sehr P et al (2003) Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 129:521–530

    Article  PubMed  CAS  Google Scholar 

  • Fiander AN, Tristram AJ, Davidson EJ et al (2006) Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer 16:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Frazer IH, Quinn M, Nicklin JL et al (2004) Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23:172–181

    Article  PubMed  CAS  Google Scholar 

  • Garcia F, Petry KU, Muderspach L et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103:317–326

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Hernandez E, Gonzalez-Sanchez JL, Andrade-Manzano A et al (2006) Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine. Cancer Gene Ther 13:592–597

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MV, Maris CH, Hipkiss EL et al (2007) Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110:186–192

    Article  PubMed  CAS  Google Scholar 

  • Goldstone SE, Palefsky JM, Winnett MT, Neefe JR (2002) Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum 45:502–507

    Article  PubMed  Google Scholar 

  • Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM (2007) Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother 56:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  PubMed  CAS  Google Scholar 

  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479

    PubMed  CAS  Google Scholar 

  • Hallez S, Detremmerie O, Giannouli C et al (1999) Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int J Cancer 81:428–437

    Article  PubMed  CAS  Google Scholar 

  • Hallez S, Simon P, Maudoux F et al (2004) Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunol Immunother 53:642–650

    Article  PubMed  CAS  Google Scholar 

  • Hariharan MJ, Driver DA, Townsend K et al (1998) DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 72:950–958

    PubMed  CAS  Google Scholar 

  • Harper DM (2009) Prevention of human papillomavirus infections and associated diseases by vaccination: a new hope for global public health. Public Health Genomics 12:319–330

    Article  PubMed  Google Scholar 

  • Harper DM, Franco EL, Wheeler CM et al (2006) Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Hedley ML, Curley J, Urban R (1998) Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 4:365–368

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa Y, Arai M, Imazeki F et al (2006) Methylation status of genes upregulated by demethylating agent 5-aza-2′-deoxycytidine in hepatocellular carcinoma. Oncology 71:77–85

    PubMed  CAS  Google Scholar 

  • Hoory T, Monie A, Gravitt P, Wu TC (2008) Molecular epidemiology of human papillomavirus. J Formos Med Assoc 107:198–217

    Article  PubMed  Google Scholar 

  • Hospital NTU (2009) Immunotherapy of recurrent cervical cancers using dendritic cells (DCs). http://clinicaltrials.gov/ct2/show/NCT00155766. Accessed 17 Nov 2009

  • Hsieh CJ, Kim TW, Hung CF et al (2004) Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 22:3993–4001

    Article  PubMed  CAS  Google Scholar 

  • Hsu KF, Hung CF, Cheng WF et al (2001) Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8:376–383

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Peng S, He L et al (2005) Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther 12:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Mao CP, Peng S, Hung CF, Wu TC (2008) RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency. Hum Gene Ther 19:763–773

    Article  PubMed  CAS  Google Scholar 

  • Hung CF, Cheng WF, Chai CY et al (2001a) Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol 166:5733–5740

    PubMed  CAS  Google Scholar 

  • Hung CF, Hsu KF, Cheng WF et al (2001b) Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 61:1080–1088

    PubMed  CAS  Google Scholar 

  • Hung CF, Cheng WF, Hsu KF et al (2001c) Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res 61:3698–3703

    PubMed  CAS  Google Scholar 

  • Hung CF, He L, Juang J, Lin TJ, Ling M, Wu TC (2002) Improving DNA vaccine potency by linking Marek’s disease virus type 1 VP22 to an antigen. J Virol 76:2676–2682

    Article  PubMed  CAS  Google Scholar 

  • Hung CF, Cheng WF, He L et al (2003) Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res 63:2393–2398

    PubMed  CAS  Google Scholar 

  • Hung CF, Tsai YC, He L, Wu TC (2007) DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Mol Ther 15:1211–1219

    PubMed  CAS  Google Scholar 

  • Indrova M, Bieblova J, Jandlova T, Vonka V, Pajtasz-Piasecka E, Reinis M (2006) Chemotherapy, IL-12 gene therapy and combined adjuvant therapy of HPV 16-associated MHC class I-proficient and -deficient tumours. Int J Oncol 28:253–259

    PubMed  CAS  Google Scholar 

  • Ji H, Wang TL, Chen CH et al (1999) Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther 10:2727–2740

    Article  PubMed  CAS  Google Scholar 

  • Kang TH, Lee JH, Song CK et al (2007) Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res 67:802–811

    Article  PubMed  CAS  Google Scholar 

  • Kang TH, Chung JY, Monie A, Pai SI, Hung CF (2009) Wu TC. Enhancing DNA vaccine potency by co-administration of xenogenic MHC-class-I DNA, Gene Ther

    Google Scholar 

  • Kast WM (2008) VEEV replicon-based vaccines used in heterologous prime boost strategies induce lifelong protection againt cancer and therapy of cervical cancer in mice and robust cell-mediated immunity in rhesus macques. Vaccin Technol II P09. http://services.bepress.com/eci/vaccine/Lecture 04

    Google Scholar 

  • Kaufmann AM, Stern PL, Rankin EM et al (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8:3676–3685

    PubMed  CAS  Google Scholar 

  • Kenter GG, Welters MJ, Valentijn AR et al (2008) Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kenter GG, Welters MJ, Valentijn AR et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Sin JI (2005) Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology 116:255–266

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Hung CF, Ling M et al (2003) Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 112:109–117

    PubMed  CAS  Google Scholar 

  • Kim TW, Hung CF, Kim JW et al (2004a) Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum Gene Ther 15:167–177

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Hung CF, Juang J, He L, Hardwick JM, Wu TC (2004b) Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther 11:336–342

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Lee JH, He L et al (2005) Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 65:309–316

    PubMed  CAS  Google Scholar 

  • Kim D, Hoory T, Wu TC, Hung CF (2007) Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life and intracellular targeting strategies with a strategy to boost CD4+ T cell. Hum Gene Ther 18:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Gambhira R, Karanam B et al (2008a) Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine 26:351–360

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Monie A, He L, Tsai YC, Hung CF, Wu TC (2008b) Role of IL-2 secreted by PADRE-specific CD4+ T cells in enhancing E7-specific CD8+ T-cell immune responses. Gene Ther 15:677–687

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Monie A, Tsai YC et al (2008c) Enhancement of CD4+ T-cell help reverses the doxorubicin-induced suppression of antigen-specific immune responses in vaccinated mice. Gene Ther 15:1176–1183

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Hoory T, Monie A, Ting JP, Hung CF, Wu TC (2008d) Enhancement of DNA vaccine potency through coadministration of CIITA DNA with DNA vaccines via gene gun. J Immunol 180:7019–7027

    PubMed  CAS  Google Scholar 

  • Kim JH, Kang TH, Noh KH et al (2009) Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death. Immunol Lett 122:58–67

    Article  PubMed  CAS  Google Scholar 

  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184

    Article  PubMed  CAS  Google Scholar 

  • Kirnbauer R, Taub J, Greenstone H et al (1993) Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J Virol 67:6929–6936

    PubMed  CAS  Google Scholar 

  • Klencke B, Matijevic M, Urban RG et al (2002) Encapsulated plasmid DNA treatment for human ­papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res 8:1028–1037

    PubMed  CAS  Google Scholar 

  • Lacey CJ, Thompson HS, Monteiro EF et al (1999) Phase IIa safety and immunogenicity of a therapeutic vaccine, TA-GW, in persons with genital warts. J Infect Dis 179:612–618

    Article  PubMed  CAS  Google Scholar 

  • Leachman SA, Tigelaar RE, Shlyankevich M et al (2000) Granulocyte-macrophage colony-stimulating factor priming plus papillomavirus E6 DNA vaccination: effects on papilloma formation and regression in the cottontail rabbit papillomavirus–rabbit model. J Virol 74:8700–8708

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Anderson ME, Wu S, Lee JH (2008) Development of an adenoviral vaccine against E6 and E7 oncoproteins to prevent growth of human papillomavirus-positive cancer. Arch Otolaryngol Head Neck Surg 134:1316–1323

    Article  PubMed  Google Scholar 

  • Liao CW, Chen CA, Lee CN et al (2005) Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer Res 65:9089–9098

    Article  PubMed  CAS  Google Scholar 

  • Liao JB, Publicover J, Rose JK, DiMaio D (2008) Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol 15:817–824

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL (2002) Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int J Cancer 102:629–637

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Hung CF, Juang J et al (2003) Boosting with recombinant vaccinia increases HPV-16 E7-Specific T cell precursor frequencies and antitumor effects of HPV-16 E7-expressing Sindbis virus replicon particles. Mol Ther 8:559–566

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Tsai YC, He L et al (2006) A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci 13:481–488

    Article  PubMed  CAS  Google Scholar 

  • Liu DW, Yang YC, Lin HF et al (2007) Cytotoxic T-lymphocyte responses to human papillomavirus type 16 E5 and E7 proteins and HLA-A*0201-restricted T-cell peptides in cervical cancer patients. J Virol 81:2869–2879

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Ye D, Song X et al (2008) A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 26:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Hoory T, Monie A, Wu A, Wang MC, Hung CF (2009) Treatment with demethylating agent, 5-aza-2′-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine 27:4363–4369

    Article  PubMed  CAS  Google Scholar 

  • Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Mackova J, Stasikova J, Kutinova L et al (2006) Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother 55:39–46

    Article  PubMed  CAS  Google Scholar 

  • Manuri PR, Nehete B, Nehete PN et al (2007) Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection. Vaccine 25:3302–3310

    Article  PubMed  CAS  Google Scholar 

  • Mao CP, Hung CF, Kang TH et al (2010) Combined administration with DNA encoding vesicular stomatitis virus G protein enhances DNA vaccine potency. J Virol 84:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Melief CJ, Welters MJ, Lowik MJ, Vloon AP, Kenter GG (2007) Long peptide vaccine-induced migration of HPV16-specific type 1 and 2 T cells into the lesions of VIN III patients associated with complete clinical responses. Cancer Immun 7(Suppl 1):20

    Google Scholar 

  • Mikyskova R, Indrova M, Simova J et al (2004) Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol 24:161–167

    PubMed  CAS  Google Scholar 

  • Muderspach L, Wilczynski S, Roman L et al (2000) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406–3416

    PubMed  CAS  Google Scholar 

  • Munn DH, Mellor AL (2004) IDO and tolerance to tumors. Trends Mol Med 10:15–18

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380

    Article  PubMed  CAS  Google Scholar 

  • NCI (2009a) Vaccine therapy in preventing cervical cancer in patients with cervical intraepithelial neoplasia. http://clinicaltrials.gov/ct2/show/NCT00054041. Accessed 11 Nov 2009

  • NCI (2009b) SGN-00101 vaccine in treating human papillomavirus in patients who have abnormal cervical cells. http://clinicaltrials.gov/ct2/show/NCT00091130. Accessed 4 Nov 2009

  • NCI (2009c) Vaccine therapy with or without imiquimod in treating patients with grade 3 cervical intraepithelial neoplasia. http://clinicaltrials.gov/ct2/show/NCT00788164. Accessed 14 Nov 2009

  • NCI (2009d) Surgery and vaccine therapy in treating patients with early cervical cancer. http://clinicaltrials.gov/show/NCT00002916. Accessed 3 Nov 2009

  • Nventa (2008) A multicenter, nonrandomized, open-label phase I safety study of HspE7 and poly-ICLC administered concomittantly in cervical intrapeithelial neoplasia (CIN) subjects. http://clinicaltrials.gov/show/NCT00493545. Accessed 20 Nov 2009

  • Ohlschlager P, Quetting M, Alvarez G, Durst M, Gissmann L, Kaufmann AM (2009) Enhancement of immunogenicity of a therapeutic cervical cancer DNA-based vaccine by co-application of sequence-optimized genetic adjuvants. Int J Cancer 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Palefsky JM, Berry JM, Jay N et al (2006) A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS 20:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  • Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30:233–245

    PubMed  CAS  Google Scholar 

  • Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18:206–213

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Trimble C, Ji H et al (2005a) Characterization of HPV-16 E6 DNA vaccines employing intracellular targeting and intercellular spreading strategies. J Biomed Sci 12:689–700

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Kim TW, Lee JH et al (2005b) Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 16:584–593

    Article  PubMed  CAS  Google Scholar 

  • Phase I clinical trial results to test the safety and immunogenicity of VGX-3100 released (2009) http://www.news-medical.net/news/20091005/Phase-I-clinical-trial-results-to-test-the-safety-and-immunogenicity-of-VGX-3100-released.aspx. Accessed 21 Nov 2009

  • Pokorna D, Rubio I, Muller M (2008) DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants. Genet Vaccin Ther 6:4

    Article  CAS  Google Scholar 

  • Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK (2009) Microneedle-based vaccines. Curr Top Microbiol Immunol 333:369–393

    Article  PubMed  CAS  Google Scholar 

  • Preville X, Ladant D, Timmerman B, Leclerc C (2005) Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res 65:641–649

    PubMed  CAS  Google Scholar 

  • Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239:389–401

    Article  PubMed  CAS  Google Scholar 

  • Ressing ME, van Driel WJ, Brandt RM et al (2000) Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 23:255–266

    Article  PubMed  CAS  Google Scholar 

  • Rittich S, Duskova M, Mackova J, Pokorna D, Jinoch P, Smahel M (2005) Combined immunization with DNA and transduced tumor cells expressing mouse GM-CSF or IL-2. Oncol Rep 13:311–317

    PubMed  CAS  Google Scholar 

  • Roden R, Wu TC (2006) How will HPV vaccines affect cervical cancer? Nat Rev Cancer 6:753–763

    Article  PubMed  CAS  Google Scholar 

  • Roden RB, Monie A, Wu TC (2007) Opportunities to improve the prevention and treatment of cervical cancer. Curr Mol Med 7:490–503

    Article  PubMed  CAS  Google Scholar 

  • Roman LD, Wilczynski S, Muderspach LI et al (2007) A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol 106:558–566

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein N, Alvarez M, Zwirner NW et al (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5:241–251

    Article  PubMed  CAS  Google Scholar 

  • Santin AD, Bellone S, Gokden M, Cannon MJ, Parham GP (2002) Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer. N Engl J Med 346:1752–1753

    Article  PubMed  Google Scholar 

  • Santin AD, Bellone S, Roman JJ, Burnett A, Cannon MJ, Pecorelli S (2005) Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Curr Pharm Des 11:3485–3500

    Article  PubMed  CAS  Google Scholar 

  • Santin AD, Bellone S, Palmieri M et al (2006) HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol 100:469–478

    Article  PubMed  CAS  Google Scholar 

  • Santin AD, Bellone S, Palmieri M et al (2008) Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol 82:1968–1979

    Article  PubMed  CAS  Google Scholar 

  • Seo SH, Jin HT, Park SH, Youn JI, Sung YC (2009) Optimal induction of HPV DNA vaccine-induced CD8(+) T cell responses and therapeutic antitumor effect by antigen engineering and electroporation. Vaccine 27(42):5906–5912

    Article  PubMed  CAS  Google Scholar 

  • Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y (2004a) Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg 130:92–97

    Article  PubMed  Google Scholar 

  • Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y (2004b) Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64:8821–8825

    Article  PubMed  CAS  Google Scholar 

  • Sewell DA, Pan ZK, Paterson Y (2008) Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine 26:5315–5320

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Elpek KG, Yolcu ES et al (2009) Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors. Cancer Res 69:4319–4326

    Article  PubMed  CAS  Google Scholar 

  • Sheets EE, Urban RG, Crum CP et al (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188:916–926

    Article  PubMed  CAS  Google Scholar 

  • Smyth LJ, Van Poelgeest MI, Davidson EJ et al (2004) Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin Cancer Res 10:2954–2961

    Article  PubMed  CAS  Google Scholar 

  • Song XT, Evel-Kabler K, Rollins L et al (2006) An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells. PLoS Med 3:e11

    Article  PubMed  CAS  Google Scholar 

  • Steller MA, Gurski KJ, Murakami M et al (1998) Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 4:2103–2109

    PubMed  CAS  Google Scholar 

  • Stewart TJ, Drane D, Malliaros J et al (2004) ISCOMATRIX adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine 22:3738–3743

    Article  PubMed  CAS  Google Scholar 

  • Storrie H, Mooney DJ (2006) Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev 58:500–514

    Article  PubMed  CAS  Google Scholar 

  • Su X, Kim BS, Kim SR, Hammond PT, Irvine DJ (2009) Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano

    Google Scholar 

  • Thompson HS, Davies ML, Holding FP et al (1999) Phase I safety and antigenicity of TA-GW: a recombinant HPV6 L2E7 vaccine for the treatment of genital warts. Vaccine 17:40–49

    Article  PubMed  CAS  Google Scholar 

  • Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 60:5456–5463

    PubMed  CAS  Google Scholar 

  • Trimble CL (2009) Therapeutic vaccination for patients With HPV16+ cervical intraepithelial neoplasia (CIN2/3). http://clinicaltrials.gov/ct2/show/NCT00988559?term=CRT%2Fe7+AND+detox%26rank=1. Accessed Nov 17 2009

  • Trimble C, Lin CT, Hung CF et al (2003) Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 21:4036–4042

    Article  PubMed  CAS  Google Scholar 

  • Trimble CL, Peng S, Kos F et al (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15:361–367

    Article  PubMed  CAS  Google Scholar 

  • Tsen SW, Wu CY, Meneshian A, Pai SI, Hung CF, Wu TC (2009) Femtosecond laser treatment enhances DNA transfection efficiency in vivo. J Biomed Sci 16:36

    Article  PubMed  CAS  Google Scholar 

  • Tseng CW, Hung CF, Alvarez RD et al (2008a) Pretreatment with cisplatin enhances E7-specific CD8+ T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192

    Article  PubMed  CAS  Google Scholar 

  • Tseng CW, Monie A, Trimble C et al (2008b) Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects. Vaccine 26:4314–4319

    Article  PubMed  CAS  Google Scholar 

  • Tseng CW, Monie A, Wu CY et al (2008c) Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. J Mol Med 86:899–908

    Article  PubMed  CAS  Google Scholar 

  • Tseng CW, Trimble C, Zeng Q et al (2009) Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother 58:737–748

    Article  PubMed  CAS  Google Scholar 

  • Vambutas A, DeVoti J, Nouri M et al (2005) Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine 23:5271–5280

    Article  PubMed  CAS  Google Scholar 

  • van den Berg JH, Nujien B, Beijnen JH et al (2009) Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 20:181–189

    Article  PubMed  CAS  Google Scholar 

  • van der Burg SH, Kwappenberg KM, O’Neill T et al (2001) Pre-clinical safety and efficacy of TA-CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime-boost regimens. Vaccine 19:3652–3660

    Article  PubMed  Google Scholar 

  • Van Doorslaer K, Reimers LL, Studentsov YY, Einstein MH, Burk RD (2010) Serological response to an HPV16 E7 based therapeutic vaccine in women with high-grade cervical dysplasia. Gynecol Oncol 116(2):208–212

    Article  PubMed  CAS  Google Scholar 

  • van Driel WJ, Ressing ME, Kenter GG et al (1999) Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 35:946–952

    Article  PubMed  Google Scholar 

  • VGX (2009) Phase I of human papillomavirus (HPV) DNA plasmid (VGX-3100)  +  electroporation for CIN 2 or 3. http://clinicaltrials.gov/ct2/show/NCT00685412. Accessed 6 Nov 2009

  • Villa LL, Costa RL, Petta CA et al (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6:271–278

    Article  PubMed  Google Scholar 

  • Villa LL, Ault KA, Giuliano AR et al (2006) Immunologic responses following administration of a vaccine targeting human papillomavirus Types 6, 11, 16, and 18. Vaccine 24:5571–5583

    Article  PubMed  CAS  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  • Wang TL, Ling M, Shih IM et al (2000) Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity. Gene Ther 7:726–733

    Article  PubMed  CAS  Google Scholar 

  • Welters MJ, Kenter GG, Piersma SJ et al (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187

    Article  PubMed  CAS  Google Scholar 

  • Wlazlo AP, Deng H, Giles-Davis W, Ertl HC (2004) DNA vaccines against the human papillomavirus type 16 E6 or E7 oncoproteins. Cancer Gene Ther 11:457–464

    Article  PubMed  CAS  Google Scholar 

  • Wu TC, Guarnieri FG, Staveley-O’Carroll KF et al (1995) Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci USA 92:11671–11675

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Harris K, Khan AS, Draghia-Akli R, Sewell D, Weiner DB (2008) Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensus protein in mice and rhesus macaques. Vaccine 26:5210–5215

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Reichenbach DK, Corbitt N et al (2009) Induction of antitumor immunity in vivo following delivery of a novel HPV-16 DNA vaccine encoding an E6/E7 fusion antigen. Vaccine 27:431–440

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  PubMed  CAS  Google Scholar 

  • Yue FY, Dummer R, Geertsen R et al (1997) Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 71:630–637

    Article  PubMed  CAS  Google Scholar 

  • Zeira E, Manevitch A, Manevitch Z et al (2007) Femtosecond laser: a new intradermal DNA delivery method for efficient, long-term gene expression and genetic immunization. FASEB J 21:3522–3533

    Article  PubMed  Google Scholar 

  • Zhou L, Zhu T, Ye X et al (2010) Long-term protection against HPV E7-positive tumor by a single vaccination of AAV vectors encoding a fusion protein of inactivated E7 of HPV 16/18 and heat shock protein 70. Hum Gene Ther 21(1):109–119

    Google Scholar 

  • Zong J, Peng Q, Wang Q, Zhang T, Fan D, Xu X (2009) Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncol Rep 22:953–961

    PubMed  CAS  Google Scholar 

  • zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  PubMed  CAS  Google Scholar 

  • Zurkova K, Babiarova K, Hainz P et al (2009) The expression of the soluble isoform of hFlt3 ligand by recombinant vaccinia virus enhances immunogenicity of the vector. Oncol Rep 21:1335–1343

    PubMed  CAS  Google Scholar 

  • Zwaveling S, Ferreira Mota SC, Nouta J et al (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169:350–358

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This book chapter is not intended to be an encyclopedic one, and the authors apologize to those not cited. The work is supported by the NCI SPORE in Cervical Cancer P50 CA098252 and NCI 1RO1 CA114425-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Wu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, C., Ma, B., Chen, A., Hung, CF., Wu, T.C. (2012). Perspectives on Therapeutic HPV Vaccines: Where Are We Now?. In: Borruto, F., De Ridder, M. (eds) HPV and Cervical Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1988-4_13

Download citation

Publish with us

Policies and ethics