Influence of Different Stem Cell Mobilization Strategies on Graft Composition and Outcome of Autologous or Allogeneic Transplantation

  • Stefan Fruehauf
  • Guido Tricot


Autologous and allogeneic hematopoietic stem cell (HSC) transplantation are considered the standard of care for many malignancies including lymphoma, myeloma, and some leukemias. In many cases, mobilized peripheral blood has become the preferred source for HSCs. The efficacy of different mobilization regimens and transplant outcomes based on cell doses has been well studied. However, the characteristics of the stem cell graft may be of equal importance with respect to patient outcomes following autologous or allogeneic transplant. This review summarizes available preclinical and clinical data for bone marrow and mobilized peripheral blood HSC graft characteristics, defined as the cell types found in the graft as well as their gene expression profiles. This manuscript also explores how graft characteristics can impact bone marrow homing, engraftment, immune reconstitution, and other posttransplant outcomes in both the allogeneic and autologous settings.


Autologous transplant Allogeneic transplant Plerixafor Chemomobilization Graft characteristics 



S.F. received research funding and honoraria from Genzyme Corporation for clinical studies and oral presentation regarding plerixafor. G.T has nothing to disclose. Financial support for medical editorial assistance was provided by Genzyme Corporation. The authors thank Richard Balzer, Ph.D. (MediTech Media) for medical editorial assistance with this manuscript. We gratefully acknowledge Elsevier’s permission to reuse material.


  1. 1.
    Osgood EE, Riddle MC, Mathews TJ (1939) Aplastic anemia treated with daily transfusions and intravenous marrow. Ann Intern Med 13:357–367Google Scholar
  2. 2.
    Morrison M, Samwick AA (1940) Intramedullary (sternal) transfusion of human bone marrow. JAMA 115:1708–1711CrossRefGoogle Scholar
  3. 3.
    Thomas ED, Buckner CD, Banaji M et al (1977) One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood 49:511–533PubMedGoogle Scholar
  4. 4.
    Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1965) Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 25:1525–1531PubMedGoogle Scholar
  5. 5.
    van Bekkum DW, de Vries MJ (1967) Radiation Chimeras. Academic Press, New YorkGoogle Scholar
  6. 6.
    Thomas E, Storb R, Clift RA et al (1975) Bone-marrow transplantation (first of two parts). N Engl J Med 292:832–843PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas ED, Storb R, Clift RA et al (1975) Bone-marrow transplantation (second of two parts). N Engl J Med 292:895–902PubMedCrossRefGoogle Scholar
  8. 8.
    Reiffers J, Bernard P, David B et al (1986) Successful autologous transplantation with peripheral blood hemopoietic cells in a patient with acute leukemia. Exp Hematol 14:312–315PubMedGoogle Scholar
  9. 9.
    Korbling M, Dorken B, Ho AD, Pezzutto A, Hunstein W, Fliedner TM (1986) Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 67:529–532PubMedGoogle Scholar
  10. 10.
    Kessinger A, Armitage JO, Landmark JD, Weisenburger DD (1986) Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol 14:192–196PubMedGoogle Scholar
  11. 11.
    Juttner CA, To LB, Haylock DN, Branford A, Kimber RJ (1985) Circulating autologous stem cells collected in very early remission from acute non-lymphoblastic leukaemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol 61:739–745PubMedCrossRefGoogle Scholar
  12. 12.
    Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72:2074–2081PubMedGoogle Scholar
  13. 13.
    Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD (1988) Granulocyte–macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1:1194–1198PubMedCrossRefGoogle Scholar
  14. 14.
    Goldschmidt H, Hegenbart U, Haas R, Hunstein W (1996) Mobilization of peripheral blood progenitor cells with high-dose cyclophosphamide (4 or 7 g/m2) and granulocyte colony-stimulating factor in patients with multiple myeloma. Bone Marrow Transplant 17:691–697PubMedGoogle Scholar
  15. 15.
    Haas R, Mohle R, Fruhauf S et al (1994) Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 83:3787–3794PubMedGoogle Scholar
  16. 16.
    Seggewiss R, Buss EC, Herrmann D, Goldschmidt H, Ho AD, Fruehauf S (2003) Kinetics of peripheral blood stem cell mobilization following G-CSF-supported chemotherapy. Stem Cells 21:568–574PubMedCrossRefGoogle Scholar
  17. 17.
    Moskowitz CH, Bertino JR, Glassman JR et al (1999) Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin’s lymphoma. J Clin Oncol 17:3776–3785PubMedGoogle Scholar
  18. 18.
    Kewalramani T, Zelenetz AD, Nimer SD et al (2004) Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 103:3684–3688PubMedCrossRefGoogle Scholar
  19. 19.
    Bishton MJ, Lush RJ, Byrne JL, Russell NH, Shaw BE, Haynes AP (2007) Ifosphamide, etoposide and epirubicin is an effective combined salvage and peripheral blood stem cell mobilisation regimen for transplant-eligible patients with non-Hodgkin lymphoma and Hodgkin disease. Br J Haematol 136:752–761PubMedCrossRefGoogle Scholar
  20. 20.
    Pavone V, Gaudio F, Guarini A et al (2002) Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant 29:285–290PubMedCrossRefGoogle Scholar
  21. 21.
    Fruehauf S, Seggewiss R (2003) It’s moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement [corrected]. Br J Haematol 122:360–375PubMedCrossRefGoogle Scholar
  22. 22.
    Bonig H, Wundes A, Chang KH, Lucas S, Papayannopoulou T (2008) Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111:3439–3441PubMedCrossRefGoogle Scholar
  23. 23.
    Zohren F, Toutzaris D, Klarner V, Hartung HP, Kieseier B, Haas R (2008) The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 111:3893–3895PubMedCrossRefGoogle Scholar
  24. 24.
    Liu W, Wang L, Shang X et al (2008) Mobilization of Hematopoitic Stem/Progenitor Cells by a Cdc42 Activity-Specific Inhibitor. Blood 112:32–33Google Scholar
  25. 25.
    Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y (2007) Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA 104:5091–5096PubMedCrossRefGoogle Scholar
  26. 26.
    Ramirez PA, Rettig M, Holt M, Ritchey J, DiPersio JF (2008) Rapid mobilization of long term repopulating hematopoietic stem cells (HSC) with AMD15057, a small molecule inhibitor of VLA4; synergism with AMD3100 and G-CSF. Blood 112:229–230Google Scholar
  27. 27.
    Janeway CA, Travers P, Walport M, Shlomchik MJ (eds) (2005) Immunobiology. Garland Science Publishing, New YorkGoogle Scholar
  28. 28.
    Fruehauf S, Haas R, Zeller WJ, Hunstein W (1994) CD34 selection for purging in multiple myeloma and analysis of CD34+ B cell precursors. Stem Cells 12:95–102PubMedCrossRefGoogle Scholar
  29. 29.
    Sutherland DR, Keating A, Nayar R, Anania S, Stewart AK (1994) Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol 22:1003–1010PubMedGoogle Scholar
  30. 30.
    Kollet O, Dar A, Shivtiel S et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664PubMedCrossRefGoogle Scholar
  31. 31.
    Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003PubMedCrossRefGoogle Scholar
  32. 32.
    Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM, Harlan JM (2001) Synergistic mobilization of hemopoietic progenitor cells using concurrent beta1 and beta2 integrin blockade or beta2-deficient mice. Blood 97:1282–1288PubMedCrossRefGoogle Scholar
  33. 33.
    Avigdor A, Goichberg P, Shivtiel S et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989PubMedCrossRefGoogle Scholar
  34. 34.
    Deichmann M, Kronenwett R, Haas R (1997) Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34+ hematopoietic progenitor cells. Blood 89:3522–3528PubMedGoogle Scholar
  35. 35.
    Richman CM, Weiner RS, Yankee RA (1976) Increase in circulating stem cells following chemotherapy in man. Blood 47:1031–1039PubMedGoogle Scholar
  36. 36.
    Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30:440–449PubMedCrossRefGoogle Scholar
  37. 37.
    Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637PubMedCrossRefGoogle Scholar
  38. 38.
    Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98:1289–1297PubMedCrossRefGoogle Scholar
  39. 39.
    Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  40. 40.
    Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027PubMedCrossRefGoogle Scholar
  41. 41.
    Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19:583–593PubMedCrossRefGoogle Scholar
  42. 42.
    Martin C, Bridger GJ, Rankin SM (2006) Structural analogues of AMD3100 mobilise haematopoietic progenitor cells from bone marrow in vivo according to their ability to inhibit CXCL12 binding to CXCR4 in vitro. Br J Haematol 134:326–329PubMedCrossRefGoogle Scholar
  43. 43.
    Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527:255–262PubMedCrossRefGoogle Scholar
  44. 44.
    Fricker SP, Anastassov V, Cox J et al (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72:588–596PubMedCrossRefGoogle Scholar
  45. 45.
    Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276:14153–14160PubMedCrossRefGoogle Scholar
  46. 46.
    Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318PubMedCrossRefGoogle Scholar
  47. 47.
    Paganessi LA, Walker AL, Tan LL, Holmes I, Rich E, Fung HC, Christopherson KW 2nd (2011) Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26−/− mice through AMD3100-induced disruption of the CXCL12–CXCR4 axis. Exp Hematol 39(3):384–390PubMedCrossRefGoogle Scholar
  48. 48.
    Morris CL, Siegel E, Barlogie B et al (2003) Mobilization of CD34+ cells in elderly patients (>/= 70 years) with multiple myeloma: influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol 120:413–423PubMedCrossRefGoogle Scholar
  49. 49.
    Hosing C, Saliba R, Ahlawat S et al (2009) Poor hematopoietic stem cell mobilizers: a single institution study of incidence and risk factors in patients with recurrent or relapsed lymphoma. Am J Hematol 84:335–337PubMedCrossRefGoogle Scholar
  50. 50.
    Bensinger W, Appelbaum F, Rowley S et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13:2547–2555PubMedGoogle Scholar
  51. 51.
    Demirer T, Buckner CD, Gooley T et al (1996) Factors influencing collection of peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant 17:937–941PubMedGoogle Scholar
  52. 52.
    Dreger P, Kloss M, Petersen B et al (1995) Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 86:3970–3978PubMedGoogle Scholar
  53. 53.
    Lee JL, Kim SB, Lee GW et al (2003) Collection of peripheral blood progenitor cells: analysis of factors predicting the yields. Transfus Apher Sci 29:29–37PubMedCrossRefGoogle Scholar
  54. 54.
    Moskowitz CH, Stiff P, Gordon MS et al (1997) Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin’s lymphoma patients–results of a phase I/II trial. Blood 89:3136–3147PubMedGoogle Scholar
  55. 55.
    Sugrue MW, Williams K, Pollock BH et al (2000) Characterization and outcome of “hard to mobilize” lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 39:509–519PubMedCrossRefGoogle Scholar
  56. 56.
    Gordan LN, Sugrue MW, Lynch JW et al (2003) Poor mobilization of peripheral blood stem cells is a risk factor for worse outcome in lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 44:815–820PubMedCrossRefGoogle Scholar
  57. 57.
    Paripati H, Stewart AK, Cabou S et al (2008) Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia 22:1282–1284PubMedCrossRefGoogle Scholar
  58. 58.
    Popat U, Saliba R, Thandi R et al (2009) Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15:718–723PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar S, Dispenzieri A, Lacy MQ et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21:2035–2042PubMedCrossRefGoogle Scholar
  60. 60.
    Perea G, Sureda A, Martino R et al (2001) Predictive factors for a successful mobilization of peripheral blood CD34+ cells in multiple myeloma. Ann Hematol 80:592–597PubMedCrossRefGoogle Scholar
  61. 61.
    Micallef IN, Apostolidis J, Rohatiner AZ et al (2000) Factors which predict unsuccessful mobilisation of peripheral blood progenitor cells following G-CSF alone in patients with non-Hodgkin’s lymphoma. Hematol J 1:367–373PubMedCrossRefGoogle Scholar
  62. 62.
    Micallef IN, DiPersio JF, Nademanee AP et al (2009) Efficacy of plerixafor plus G-CSF compared to G-CSF plus placebo for mobilisation of CD34+ haematopoietic progenitor cells in patients older than 60 years with non-Hodgkin’s lymphoma or multiple myeloma. Bone Marrow Transplant 42:105Google Scholar
  63. 63.
    Stiff P, Micallef I, McCarthy P et al (2009) Treatment with plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: implications for the heavily pretreated patient. Biol Blood Marrow Transplant 15:249–256PubMedCrossRefGoogle Scholar
  64. 64.
    Micallef INM, Tarantolo SR, McSweeney PA, Klien LM, Calandra GC, Huebner DH (2009) Plerixafor can predictably mobilize hematopoietic stem cells in patients with multiple myeloma previously treated with lenalidomide. Haematologica 94:292Google Scholar
  65. 65.
    Schriber JRS, McCarty JM, McGuirk JM, Spitzer GS, Uberti JPU, Calandra GC (2009) Plerixafor can predictably mobilize hematopoietic stem cells in patients with non-Hodgkin’s lymphoma previously treated with fludarabine and undergoing autologous stem cell transplantation. Haematologica 94:289CrossRefGoogle Scholar
  66. 66.
    Calandra G, McCarty J, McGuirk J et al (2008) AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 41:331–338PubMedCrossRefGoogle Scholar
  67. 67.
    Micallef IN, Stiff PJ, DiPersio JF et al (2009) Successful stem cell remobilization using plerixafor (Mozobil) plus granulocyte colony-stimulating factor in patients with non-hodgkin lymphoma: results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 15:1578–1586PubMedCrossRefGoogle Scholar
  68. 68.
    Micallef IN, Jacobsen E, Shaughnessy P, Marulkar S, Mody P, van Rhee F (2009) Plerixafor (Mozobil®) plus G-CSF is effective in mobilizing hematopoietic stem cells in patients with concurrent thrombocytopenia undergoing autologous hematopoietic stem cell transplantation. Blood 114:1251Google Scholar
  69. 69.
    Ivanovic Z, Kovacevic-Filipovic M, Jeanne M, et al (2010) CD34+ cells obtained from “good mobilizers” are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from “poor mobilizers”. Transfusion 50:120–127.Google Scholar
  70. 70.
    Franklin WA, Glaspy J, Pflaumer SM et al (1999) Incidence of tumor-cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone. Blood 94:340–347PubMedGoogle Scholar
  71. 71.
    Billadeau D, Quam L, Thomas W et al (1992) Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 80:1818–1824PubMedGoogle Scholar
  72. 72.
    Lemoli RM, Cavo M, Fortuna A (1996) Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of patients with multiple myeloma. J Hematother 5:339–349PubMedCrossRefGoogle Scholar
  73. 73.
    Demirkazik A, Kessinger A, Armitage JO et al (2001) Progenitor and lymphoma cells in blood stem cell harvests: impact on survival following transplantation. Bone Marrow Transplant 28:207–212PubMedCrossRefGoogle Scholar
  74. 74.
    Gribben JG, Neuberg D, Freedman AS et al (1993) Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 81:3449–3457PubMedGoogle Scholar
  75. 75.
    Gertz MA, Witzig TE, Pineda AA, Greipp PR, Kyle RA, Litzow MR (1997) Monoclonal plasma cells in the blood stem cell harvest from patients with multiple myeloma are associated with shortened relapse-free survival after transplantation. Bone Marrow Transplant 19:337–342PubMedCrossRefGoogle Scholar
  76. 76.
    Kopp HG, Yildirim S, Weisel KC, Kanz L, Vogel W (2009) Contamination of autologous peripheral blood progenitor cell grafts predicts overall survival after high-dose chemotherapy in multiple myeloma. J Cancer Res Clin Oncol 135:637–642PubMedCrossRefGoogle Scholar
  77. 77.
    Vogel W, Kopp HG, Kanz L, Einsele H (2005) Myeloma cell contamination of peripheral blood stem-cell grafts can predict the outcome in multiple myeloma patients after high-dose chemotherapy and autologous stem-cell transplantation. J Cancer Res Clin Oncol 131:214–218PubMedCrossRefGoogle Scholar
  78. 78.
    Stewart AK, Vescio R, Schiller G et al (2001) Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. J Clin Oncol 19:3771–3779PubMedGoogle Scholar
  79. 79.
    Bourhis JH, Bouko Y, Koscielny S et al (2007) Relapse risk after autologous transplantation in patients with newly diagnosed myeloma is not related with infused tumor cell load and the outcome is not improved by CD34+ cell selection: long term follow-up of an EBMT phase III randomized study. Haematologica 92:1083–1090PubMedCrossRefGoogle Scholar
  80. 80.
    Ho J, Yang L, Banihashemi B et al (2009) Contaminating tumour cells in autologous PBSC grafts do not influence survival or relapse following transplant for multiple myeloma or B-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 43:223–228PubMedCrossRefGoogle Scholar
  81. 81.
    Mateo G, Corral M, Almeida J et al (2003) Immunophenotypic analysis of peripheral blood stem cell harvests from patients with multiple myeloma. Haematologica 88:1013–1021PubMedGoogle Scholar
  82. 82.
    Ross AA, Cooper BW, Lazarus HM et al (1993) Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82:2605–2610PubMedGoogle Scholar
  83. 83.
    Kessinger A, Armitage JO, Smith DM, Landmark JD, Bierman PJ, Weisenburger DD (1989) High-dose therapy and autologous peripheral blood stem cell transplantation for patients with lymphoma. Blood 74:1260–1265PubMedGoogle Scholar
  84. 84.
    Moss TJ, Sanders DG, Lasky LC, Bostrom B (1990) Contamination of peripheral blood stem cell harvests by circulating neuroblastoma cells. Blood 76:1879–1883PubMedGoogle Scholar
  85. 85.
    Vose JM, Sharp G, Chan WC et al (2002) Autologous transplantation for aggressive non-Hodgkin’s lymphoma: results of a randomized trial evaluating graft source and minimal residual disease. J Clin Oncol 20:2344–2352PubMedCrossRefGoogle Scholar
  86. 86.
    Vescio RA, Han EJ, Schiller GJ et al (1996) Quantitative comparison of multiple myeloma tumor contamination in bone marrow harvest and leukapheresis autografts. Bone Marrow Transplant 18:103–110PubMedGoogle Scholar
  87. 87.
    Kanteti R, Miller K, McCann J et al (1999) Randomized trial of peripheral blood progenitor cell vs bone marrow as hematopoietic support for high-dose chemotherapy in patients with non-Hodgkin’s lymphoma and Hodgkin’s disease: a clinical and molecular analysis. Bone Marrow Transplant 24:473–481PubMedCrossRefGoogle Scholar
  88. 88.
    Leonard BM, Hetu F, Busque L et al (1998) Lymphoma cell burden in progenitor cell grafts measured by competitive polymerase chain reaction: less than one log difference between bone marrow and peripheral blood sources. Blood 91:331–339PubMedGoogle Scholar
  89. 89.
    Kiel K, Cremer FW, Ehrbrecht E et al (1998) First and second apheresis in patients with multiple myeloma: no differences in tumor load and hematopoietic stem cell yield. Bone Marrow Transplant 21:1109–1115PubMedCrossRefGoogle Scholar
  90. 90.
    Lincz LF, Crooks RL, Way SL, Granter N, Spencer A (2001) Tumour kinetics in multiple myeloma before, during, and after treatment. Leuk Lymphoma 40:373–384PubMedCrossRefGoogle Scholar
  91. 91.
    Gazitt Y, Tian E, Barlogie B et al (1996) Differential mobilization of myeloma cells and normal hematopoietic stem cells in multiple myeloma after treatment with cyclophosphamide and granulocyte–macrophage colony-stimulating factor. Blood 87:805–811PubMedGoogle Scholar
  92. 92.
    Cremer FW, Kiel K, Wallmeier M, Haas R, Goldschmidt H, Moos M (1998) Leukapheresis products in multiple myeloma: lower tumor load after mobilization with cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) compared with G-CSF alone. Exp Hematol 26:969–975PubMedGoogle Scholar
  93. 93.
    Anagnostopoulos A, Aleman A, Yang Y et al (2004) Outcomes of autologous stem cell transplantation in patients with multiple myeloma who received dexamethasone-based nonmyelosuppressive induction therapy. Bone Marrow Transplant 33:623–628PubMedCrossRefGoogle Scholar
  94. 94.
    Narayanasami U, Kanteti R, Morelli J et al (2001) Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood 98:2059–2064PubMedCrossRefGoogle Scholar
  95. 95.
    Fruehauf S, Ehninger G, Hubel K, et al (2010) Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin’s lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant 45:269–275.Google Scholar
  96. 96.
    Tricot G, Cottler-Fox M, Calandra G (2010) Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant 45:63–68.Google Scholar
  97. 97.
    DiPersio JF, Bridger G, Calandra G (2009) Effect of plerixafor (AMD 3100) plus G-CSF on tumor cell mobilization among patients with lymphoma. Biol Blood Marrow Transplant 15:37CrossRefGoogle Scholar
  98. 98.
    Mohle R, Pforsich M, Fruehauf S, Witt B, Kramer A, Haas R (1994) Filgrastim post-chemotherapy mobilizes more CD34+ cells with a different antigenic profile compared with use during steady-state hematopoiesis. Bone Marrow Transplant 14:827–832PubMedGoogle Scholar
  99. 99.
    Haas R, Mohle R, Pforsich M et al (1995) Blood-derived autografts collected during granulocyte colony-stimulating factor-enhanced recovery are enriched with early Thy-1+ hematopoietic progenitor cells. Blood 85:1936–1943PubMedGoogle Scholar
  100. 100.
    Dercksen MW, Rodenhuis S, Dirkson MK et al (1995) Subsets of CD34+ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation. J Clin Oncol 13:1922–1932PubMedGoogle Scholar
  101. 101.
    Millar BC, Millar JL, Shepherd V et al (1998) The importance of CD34+/CD33− cells in platelet engraftment after intensive therapy for cancer patients given peripheral blood stem cell rescue. Bone Marrow Transplant 22:469–475PubMedCrossRefGoogle Scholar
  102. 102.
    Benboubker L, Binet C, Cartron G et al (2002) Frequency and differentiation capacity of circulating LTC-IC mobilized by G-CSF or GM-CSF following chemotherapy: a comparison with steady-state bone marrow and peripheral blood. Exp Hematol 30:74–81PubMedCrossRefGoogle Scholar
  103. 103.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  104. 104.
    Rissoan MC, Soumelis V, Kadowaki N et al (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–1186PubMedCrossRefGoogle Scholar
  105. 105.
    Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95:2484–2490PubMedGoogle Scholar
  106. 106.
    Xia G, Truitt RL, Johnson BD (2006) Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigen-presenting cells and regulated by regulatory T cells in early and long-term chimeras. Biol Blood Marrow Transplant 12:397–407PubMedCrossRefGoogle Scholar
  107. 107.
    Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN (2003) Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma 44:997–1000PubMedCrossRefGoogle Scholar
  108. 108.
    Porrata LF, Gertz MA, Geyer SM et al (2004) The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 18:1085–1092PubMedCrossRefGoogle Scholar
  109. 109.
    Porrata LF, Litzow MR, Inwards DJ et al (2004) Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin’s lymphoma. Bone Marrow Transplant 33:291–298PubMedCrossRefGoogle Scholar
  110. 110.
    Wolf D, Wolf AM, Fong D et al (2007) Regulatory T-cells in the graft and the risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation 83:1107–1113PubMedCrossRefGoogle Scholar
  111. 111.
    Rezvani K, Mielke S, Ahmadzadeh M et al (2006) High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 108:1291–1297PubMedCrossRefGoogle Scholar
  112. 112.
    Waller EK, Rosenthal H, Sagar L (2002) DC2 effect on survival following allogeneic bone marrow transplantation. Oncology (Williston Park) 16:19–26Google Scholar
  113. 113.
    Wierenga PK, Setroikromo R, Kamps G, Kampinga HH, Vellenga E (2002) Peripheral blood stem cells differ from bone marrow stem cells in cell cycle status, repopulating potential, and sensitivity toward hyperthermic purging in mice mobilized with cyclophosphamide and granulocyte colony-stimulating factor. J Hematother Stem Cell Res 11:523–532PubMedCrossRefGoogle Scholar
  114. 114.
    Neben S, Marcus K, Mauch P (1993) Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 81:1960–1967PubMedGoogle Scholar
  115. 115.
    Yamamoto Y, Yasumizu R, Amou Y et al (1996) Characterization of peripheral blood stem cells in mice. Blood 88:445–454PubMedGoogle Scholar
  116. 116.
    Morrison SJ, Wright DE, Weissman IL (1997) Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 94:1908–1913PubMedCrossRefGoogle Scholar
  117. 117.
    Pan L, Delmonte J Jr, Jalonen CK, Ferrara JL (1995) Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86:4422–4429PubMedGoogle Scholar
  118. 118.
    Fukuda S, Bian H, King AG, Pelus LM (2007) The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 110:860–869PubMedCrossRefGoogle Scholar
  119. 119.
    Pelus LM, Singh P (2008) The combination of AMD3100 Plus GRO{beta} rapidly mobilizes hematopoietic stem cells with enhanced homing. Adhesion and survival properties. Blood 112:34CrossRefGoogle Scholar
  120. 120.
    Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245PubMedCrossRefGoogle Scholar
  121. 121.
    Matsuzaki Y, Kinjo K, Mulligan RC, Okano H (2004) Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20:87–93PubMedCrossRefGoogle Scholar
  122. 122.
    Cocks BG, Chang CC, Carballido JM, Yssel H, de Vries JE, Aversa G (1995) A novel receptor involved in T-cell activation. Nature 376:260–263PubMedCrossRefGoogle Scholar
  123. 123.
    Killeen N, Stuart SG, Littman DR (1992) Development and function of T cells in mice with a disrupted CD2 gene. EMBO J 11:4329–4336PubMedGoogle Scholar
  124. 124.
    Gonzalez-Cabrero J, Wise CJ, Latchman Y, Freeman GJ, Sharpe AH, Reiser H (1999) CD48-deficient mice have a pronounced defect in CD4(+) T cell activation. Proc Natl Acad Sci USA 96:1019–1023PubMedCrossRefGoogle Scholar
  125. 125.
    Cesana C, Carlo-Stella C, Regazzi E et al (1998) CD34+ cells mobilized by cyclophosphamide and granulocyte colony-stimulating factor (G-CSF) are functionally different from CD34+ cells mobilized by G-CSF. Bone Marrow Transplant 21:561–568PubMedCrossRefGoogle Scholar
  126. 126.
    Dazzi C, Cariello A, Rosti G et al (2000) Is there any difference in PBPC mobilization between cyclophosphamide plus G-CSF and G-CSF alone in patients with non-Hodgkin’s Lymphoma? Leuk Lymphoma 39:301–310PubMedCrossRefGoogle Scholar
  127. 127.
    Alegre A, Tomas JF, Martinez-Chamorro C et al (1997) Comparison of peripheral blood progenitor cell mobilization in patients with multiple myeloma: high-dose cyclophosphamide plus GM-CSF vs G-CSF alone. Bone Marrow Transplant 20:211–217PubMedCrossRefGoogle Scholar
  128. 128.
    Koc ON, Gerson SL, Cooper BW et al (2000) Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte–macrophage colony-stimulating factor plus G-CSF. J Clin Oncol 18:1824–1830PubMedGoogle Scholar
  129. 129.
    Fruehauf S, Veldwijk MR, Seeger T, et al (2009) A combination of granulocyte colony-stimulating factor (G-CSF) and AMD3100 (plerixafor) mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 11:992–1001.Google Scholar
  130. 130.
    Vela-Ojeda J (2006) Garcia-Ruiz Esparza MA, Reyes-Maldonado E, et al. Peripheral blood mobilization of different lymphocyte and dendritic cell subsets with the use of intermediate doses of G-CSF in patients with non-Hodgkin’s lymphoma and multiple myeloma Ann Hematol 85:308–314Google Scholar
  131. 131.
    Morse MA, Vredenburgh JJ, Lyerly HK (1999) A comparative study of the generation of dendritic cells from mobilized peripheral blood progenitor cells of patients undergoing high-dose chemotherapy. J Hematother Stem Cell Res 8:577–584PubMedCrossRefGoogle Scholar
  132. 132.
    Gazitt Y, Akay C, Thomas C 3rd (2006) No polarization of type 1 or type 2 precursor dendritic cells in peripheral blood stem cell collections of non-hodgkin’s lymphoma patients mobilized with cyclophosphamide plus G-CSF, GM-CSF, or GM-CSF followed by G-CSF. Stem Cells Dev 15:269–277PubMedCrossRefGoogle Scholar
  133. 133.
    Gazitt Y, Shaughnessy P, Devore P (2001) Mobilization of dendritic cells and NK cells in non-Hodgkin’s lymphoma patients mobilized with different growth factors. J Hematother Stem Cell Res 10:177–186PubMedCrossRefGoogle Scholar
  134. 134.
    Ferrari S, Rovati B, Porta C et al (2003) Lack of dendritic cell mobilization into the peripheral blood of cancer patients following standard- or high-dose chemotherapy plus granulocyte-colony stimulating factor. Cancer Immunol Immunother 52:359–366PubMedGoogle Scholar
  135. 135.
    Lonial S, Hicks M, Rosenthal H et al (2004) A randomized trial comparing the combination of granulocyte–macrophage colony-stimulating factor plus granulocyte colony-stimulating factor versus granulocyte colony-stimulating factor for mobilization of dendritic cell subsets in hematopoietic progenitor cell products. Biol Blood Marrow Transplant 10:848–857PubMedCrossRefGoogle Scholar
  136. 136.
    Gazitt Y, Freytes CO, Akay C, Badel K, Calandra G (2007) Improved mobilization of peripheral blood CD34+ cells and dendritic cells by AMD3100 plus granulocyte-colony-stimulating factor in non-Hodgkin’s lymphoma patients. Stem Cells Dev 16:657–666PubMedCrossRefGoogle Scholar
  137. 137.
    Condomines M, Quittet P, Lu ZY et al (2006) Functional regulatory T cells are collected in stem cell autografts by mobilization with high-dose cyclophosphamide and granulocyte colony-stimulating factor. J Immunol 176:6631–6639PubMedGoogle Scholar
  138. 138.
    Holtan SG, Porrata LF, Micallef IN et al (2007) AMD3100 affects autograft lymphocyte ­collection and progression-free survival after autologous stem cell transplantation in non-Hodgkin lymphoma. Clin Lymphoma Myeloma 7:315–318PubMedCrossRefGoogle Scholar
  139. 139.
    Taubert I, Saffrich R, Zepeda-Moreno A, Hellwig I, Eckstein V, Bruckner T, Ho AD, Wuchter P (2011) Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor. Cytotherapy 13(4):459–466PubMedCrossRefGoogle Scholar
  140. 140.
    Hess DA, Bonde J, Craft TP et al (2007) Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor. Biol Blood Marrow Transplant 13:398–411PubMedCrossRefGoogle Scholar
  141. 141.
    Menendez P, Caballero MD, Prosper F et al (2002) The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen. Transfusion 42:1159–1172PubMedCrossRefGoogle Scholar
  142. 142.
    Fruehauf S, Veldwijk MR, Kramer A, Haas R, Zeller WJ (1998) Delineation of cell cycle state and correlation to adhesion molecule expression of human CD34+ cells from steady-state bone marrow and peripheral blood mobilized following G-CSF-supported chemotherapy. Stem Cells 16:271–279PubMedCrossRefGoogle Scholar
  143. 143.
    Sampol Mayol A, Besalduch Vital J, Galmes Llodra A et al (1998) CD34+ cell dose and CD33− subsets: collection and engraftment kinetics in autologous peripheral blood stem cells transplantation. Haematologica 83:489–495PubMedGoogle Scholar
  144. 144.
    Dean R, Masci P, Pohlman B et al (2005) Dendritic cells in autologous hematopoietic stem cell transplantation for diffuse large B-cell lymphoma: graft content and post transplant recovery predict survival. Bone Marrow Transplant 36:1049–1052PubMedCrossRefGoogle Scholar
  145. 145.
    Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4  +  CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344PubMedCrossRefGoogle Scholar
  146. 146.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRefGoogle Scholar
  147. 147.
    Kao G, Stevenson K, Kim E, Spanjaard E, Kim HT, Ritz J (2008) Autologous Peripheral Blood Stem Cell Products from Patients with Hematologic Malignancies Have Increased Frequency of Regulatory T Cells (CD4+FoxP3+ Treg). Blood 112:806Google Scholar
  148. 148.
    Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276PubMedGoogle Scholar
  149. 149.
    Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMedGoogle Scholar
  150. 150.
    Marshall NA, Christie LE, Munro LR et al (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755–1762PubMedCrossRefGoogle Scholar
  151. 151.
    Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  152. 152.
    Viguier M, Lemaitre F, Verola O et al (2004) Foxp3 expressing CD4  +  CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453PubMedGoogle Scholar
  153. 153.
    Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA (2008) Local and systemic induction of CD4  +  CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 111:5359–5370PubMedCrossRefGoogle Scholar
  154. 154.
    Elquza E, Spier C, Fiederlein R, Salamon D, Yeager AM (2009) Effects of mobilization with granulocyte colony stimulating factor (G-CSF) and plerixafor On lymphocyte subsets in autologous peripheral bBlood stem cell (PBSC) apheresis products. Blood 114:843–844Google Scholar
  155. 155.
    Lemoli RM, Tafuri A, Fortuna A et al (1998) Biological characterization of CD34+ cells mobilized into peripheral blood. Bone Marrow Transplant 22(Suppl 5):S47–S50PubMedGoogle Scholar
  156. 156.
    Rettig MP, Shannon WD, Ritchey J et al (2008) Characterization of human CD34+ hematopoietic stem cells following administration of G-CSF or plerixafor. Blood 112:1192Google Scholar
  157. 157.
    Toh HC, Sun L, Soe Y et al (2009) G-CSF induces a potentially tolerant gene and immunophenotype profile in T cells in vivo. Clin Immunol 132:83–92PubMedCrossRefGoogle Scholar
  158. 158.
    Korbling M, Huh YO, Durett A et al (1995) Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 86:2842–2848PubMedGoogle Scholar
  159. 159.
    Dreger P, Haferlach T, Eckstein V et al (1994) G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 87:609–613PubMedCrossRefGoogle Scholar
  160. 160.
    Liles WC, Rodger E, Broxmeyer HE et al (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 45:295–300PubMedCrossRefGoogle Scholar
  161. 161.
    Devine SM, Vij R, Rettig M et al (2008) Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 112:990–998PubMedCrossRefGoogle Scholar
  162. 162.
    Rettig MP, McFarland K, Ritchey J et al (2009) Preferential mobilization of CD34+ plasmacytoid dendritic cell precursors by plerixafor. Blood 114:19Google Scholar
  163. 163.
    Urbano-Ispizua A, Rozman C, Pimentel P et al (2002) Risk factors for acute graft-versus-host disease in patients undergoing transplantation with CD34+ selected blood cells from HLA-identical siblings. Blood 100:724–727PubMedCrossRefGoogle Scholar
  164. 164.
    Dong L, Wu T, Zhang MJ, Gao ZY, Lu DP (2007) CD3+ cell dose and disease status are important factors determining clinical outcomes in patients undergoing unmanipulated haploidentical blood and marrow transplantation after conditioning including antithymocyte globulin. Biol Blood Marrow Transplant 13:1515–1524PubMedCrossRefGoogle Scholar
  165. 165.
    Tayebi H, Kuttler F, Saas P et al (2001) Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 29:458–470PubMedCrossRefGoogle Scholar
  166. 166.
    Uchida N, He D, Friera AM et al (1997) The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood 89:465–472PubMedGoogle Scholar
  167. 167.
    Lemoli RM, Tafuri A, Fortuna A et al (1997) Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor. Blood 89:1189–1196PubMedGoogle Scholar
  168. 168.
    Steidl U, Kronenwett R, Rohr UP et al (2002) Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 99:2037–2044PubMedCrossRefGoogle Scholar
  169. 169.
    Donahue RE, Jin P, Bonifacino AC et al (2009) Plerixafor (AMD3100) and granulocyte colony stimulating factor (G-CSF) mobilize different CD34+ cell populations based on global gene and microRNA expression signatures. Blood 114:2530–2541PubMedCrossRefGoogle Scholar
  170. 170.
    Larochelle A, Krouse A, Metzger M et al (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107:3772–3778PubMedCrossRefGoogle Scholar
  171. 171.
    Bonig H, Chudziak D, Priestley G, Papayannopoulou T (2009) Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100. Exp Hematol 37:402e.1–415e.1CrossRefGoogle Scholar
  172. 172.
    Gazitt Y, Liu Q (2001) Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin’s lymphoma patients. Stem Cells 19:37–45PubMedCrossRefGoogle Scholar
  173. 173.
    Oelschlaegel U, Bornhauser M, Boxberger S et al (2007) Kinetics of CXCR-4 and adhesion molecule expression during autologous stem cell mobilisation with G-CSF plus AMD3100 in patients with multiple myeloma. Ann Hematol 86:569–573PubMedCrossRefGoogle Scholar
  174. 174.
    Fruehauf S, Seeger T, Maier P et al (2006) The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 34:1052–1059PubMedCrossRefGoogle Scholar
  175. 175.
    Jin P, Wang E, Ren J et al (2008) Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis. J Transl Med 6:39PubMedCrossRefGoogle Scholar
  176. 176.
    Dlubek D, Drabczak-Skrzypek D, Lange A (2006) Low CXCR4 membrane expression on CD34(+) cells characterizes cells mobilized to blood. Bone Marrow Transplant 37:19–23PubMedGoogle Scholar
  177. 177.
    Amariglio N, Jacob-Hirsch J, Shimoni A, Leiba M, Rechavi G, Nagler A (2007) Changes in gene expression pattern following granulocyte colony-stimulating factor administration to normal stem cell sibling donors. Acta Haematol 117:68–73PubMedCrossRefGoogle Scholar
  178. 178.
    Stem Cell Trialists’ Collaborative Group (2005) Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087CrossRefGoogle Scholar
  179. 179.
    Bonig H, Priestley GV, Oehler V, Papayannopoulou T (2007) Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 35:326–334PubMedCrossRefGoogle Scholar
  180. 180.
    Drouet M, Herodin F, Norol F, Mourcin F, Mayol JF (2001) Cell cycle activation of peripheral blood stem and progenitor cells expanded ex vivo with SCF, FLT-3 ligand, TPO, and IL-3 results in accelerated granulocyte recovery in a baboon model of autologous transplantation but G0/G1 and S/G2/M graft cell content does not correlate with transplantability. Stem Cells 19:436–442PubMedCrossRefGoogle Scholar
  181. 181.
    Uchida N, Bonifacino A, Krouse AE, Metzger ME, Csako G, Lee-Stroka A, Fasano RM, Leitman SF, Mattapallil JJ, Hsieh MM, Tisdale JF, Donahue RE (2011) Accelerated lymphocyte reconstitution and long-term recovery after transplantation of lentiviral-transduced rhesus CD34(+) cells mobilized by G-CSF and plerixafor. Exp Hematol 39:795–805.Google Scholar
  182. 182.
    Burroughs L, Mielcarek M, Little MT et al (2005) Durable engraftment of AMD3100-mobilized autologous and allogeneic peripheral-blood mononuclear cells in a canine transplantation model. Blood 106:4002–4008PubMedCrossRefGoogle Scholar
  183. 183.
    Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR (2001) In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood 97:799–804PubMedCrossRefGoogle Scholar
  184. 184.
    Dercksen MW, Gerritsen WR, Rodenhuis S et al (1995) Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin  +  cells predict a rapid platelet recovery after peripheral blood stem cell transplantation. Blood 85:3313–3319PubMedGoogle Scholar
  185. 185.
    Sola C, Maroto P, Salazar R et al (1999) Bone marrow transplantation: prognostic factors of peripheral blood stem cell mobilization with cyclophosphamide and filgrastim (r-metHuG-CSF): the CD34+ cell dose positively affects the time to hematopoietic recovery and supportive requirements after high-dose chemotherapy. Hematology 4:195–209PubMedGoogle Scholar
  186. 186.
    Weaver CH, Hazelton B, Birch R et al (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86:3961–3969PubMedGoogle Scholar
  187. 187.
    Limat S, Woronoff-Lemsi MC, Milpied N et al (2000) Effect of cell determinant (CD)34+ cell dose on the cost and consequences of peripheral blood stem cell transplantation for non-Hodgkin’s lymphoma patients in front-line therapy. Eur J Cancer 36:2360–2367PubMedCrossRefGoogle Scholar
  188. 188.
    Ramsfjell V, Borge OJ, Cui L, Jacobsen SE (1997) Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38−) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-beta and TNF-alpha. J Immunol 158:5169–5177PubMedGoogle Scholar
  189. 189.
    Kaushansky K (1995) Thrombopoietin: the primary regulator of megakaryocyte and platelet production. Thromb Haemost 74:521–525PubMedGoogle Scholar
  190. 190.
    Sartor MM, Garvin F, Antonenas V, Bradstock KF, Gottlieb DJ (2007) Failure to achieve a threshold dose of CD34+ CD110+ progenitor cells in the graft predicts delayed platelet engraftment after autologous stem cell transplantation. Bone Marrow Transplant 40:851–857PubMedCrossRefGoogle Scholar
  191. 191.
    Hogge DE, Lambie K, Sutherland HJ et al (2000) Quantitation of primitive and lineage-committed progenitors in mobilized peripheral blood for prediction of platelet recovery post autologous transplant. Bone Marrow Transplant 25:589–598PubMedCrossRefGoogle Scholar
  192. 192.
    Bridenbaugh S, Kenins L, Bouliong-Pillai E et al (2008) Clinical stem-cell sources contain CD8  +  CD3+ T-cell receptor-negative cells that facilitate bone marrow repopulation with hematopoietic stem cells. Blood 111:1735–1738PubMedCrossRefGoogle Scholar
  193. 193.
    Larochelle A, Vormoor J, Hanenberg H et al (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2:1329–1337PubMedCrossRefGoogle Scholar
  194. 194.
    Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR (1991) Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38− progenitor cells. Blood 77:1218–1227PubMedGoogle Scholar
  195. 195.
    Dahl E, Burroughs J, DeFor T, Verfaillie C, Weisdorf D (2003) Progenitor content of autologous grafts: mobilized bone marrow vs mobilized blood. Bone Marrow Transplant 32: 575–580PubMedCrossRefGoogle Scholar
  196. 196.
    Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE (1994) Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 83:3808–3814PubMedGoogle Scholar
  197. 197.
    Klaus J, Herrmann D, Breitkreutz I et al (2007) Effect of CD34 cell dose on hematopoietic reconstitution and outcome in 508 patients with multiple myeloma undergoing autologous peripheral blood stem cell transplantation. Eur J Haematol 78:21–28PubMedCrossRefGoogle Scholar
  198. 198.
    Haas R, Witt B, Mohle R et al (1995) Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support. Blood 85:3754–3761PubMedGoogle Scholar
  199. 199.
    Porrata LF, Inwards DJ, Micallef IN, Ansell SM, Geyer SM, Markovic SN (2002) Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin’s disease. Br J Haematol 117:629–633PubMedCrossRefGoogle Scholar
  200. 200.
    Gordan LN, Sugrue MW, Lynch JW, Williams KD, Khan SA, Moreb JS (2003) Correlation of early lymphocyte recovery and progression-free survival after autologous stem-cell transplant in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Bone Marrow Transplant 31: 1009–1013PubMedCrossRefGoogle Scholar
  201. 201.
    Waller EK, Rosenthal H, Jones TW et al (2001) Larger numbers of CD4(bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 97:2948–2956PubMedCrossRefGoogle Scholar
  202. 202.
    Skert C, Damiani D, Michelutti A, et al (2009) Kinetics of Th1/Th2 cytokines and lymphocyte subsets to predict chronic GVHD after Allo-SCT: results of a prospective study. Bone Marrow Transplant 44:729–737Google Scholar
  203. 203.
    Xu LP, Luo XH, Chang YJ, et al (2009) High CD4/CD8 ratio in allografts predicts adverse outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic stem cell transplantation for chronic myeloid leukemia. Ann Hematol 88:1015–1024Google Scholar
  204. 204.
    Zeng D, Dejbakhsh-Jones S, Strober S (1997) Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood 90:453–463PubMedGoogle Scholar
  205. 205.
    Bensinger WI, Martin PJ, Storer B et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344:175–181PubMedCrossRefGoogle Scholar
  206. 206.
    Powles R, Mehta J, Kulkarni S et al (2000) Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet 355:1231–1237PubMedCrossRefGoogle Scholar
  207. 207.
    Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ (2004) Transfer of allogeneic CD62L− memory T cells without graft-versus-host disease. Blood 103:1534–1541PubMedCrossRefGoogle Scholar
  208. 208.
    Foster AE, Marangolo M, Sartor MM et al (2004) Human CD62L− memory T cells are less responsive to alloantigen stimulation than CD62L+ naive T cells: potential for adoptive immunotherapy and allodepletion. Blood 104:2403–2409PubMedCrossRefGoogle Scholar
  209. 209.
    Morris ES, MacDonald KP, Rowe V et al (2004) Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 103:3573–3581PubMedCrossRefGoogle Scholar
  210. 210.
    Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196:389–399PubMedCrossRefGoogle Scholar
  211. 211.
    Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 196:401–406PubMedCrossRefGoogle Scholar
  212. 212.
    Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99:3493–3499PubMedCrossRefGoogle Scholar
  213. 213.
    Ruzek MC, Waire JS, Hopkins D et al (2008) Characterization of in vitro antimurine thymocyte globulin-induced regulatory T cells that inhibit graft-versus-host disease in vivo. Blood 111:1726–1734PubMedCrossRefGoogle Scholar
  214. 214.
    Smith AL, Jungnam J, Rao S et al (2007) Significant alterations in T-cell TH1 and TH2 cytokine gene profiles associated with G-CSF mobilization do not occur in T-cells mobilized with AMD3100. Blood 110:962aCrossRefGoogle Scholar
  215. 215.
    Fruehauf S, Haas R, Conradt C et al (1995) Peripheral blood progenitor cell (PBPC) counts during steady-state hematopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood 85:2619–2626PubMedGoogle Scholar
  216. 216.
    Fruehauf S, Schmitt K, Veldwijk MR et al (1999) Peripheral blood progenitor cell (PBPC) counts during steady-state haemopoiesis enable the estimation of the yield of mobilized PBPC after granulocyte colony-stimulating factor supported cytotoxic chemotherapy: an update on 100 patients. Br J Haematol 105:786–794PubMedCrossRefGoogle Scholar
  217. 217.
    Sinha S, Gastineau DA, Hogan WJ et al (2009) Predicting poor peripheral blood stem cell mobilization in multiple myeloma (MM) using initial peripheral CD34 counts: developing target-based cut-points for early intervention. Blood 114:1252–1253Google Scholar
  218. 218.
    Micallef I, Ansell SM, Buadi F et al (2009) A risk adapted approach utilizing plerixafor in autologous peripheral blood stem cell mobilization. Blood 114:1244Google Scholar
  219. 219.
    Nademanee AP, Stadtmauer E, Micallef IN et al (2009) Plerixafor (Mozobil®) plus G-CSF is more efective than placebo plus G-CSF in mobilizing CD34+ hematopoietic stem cells in patients with multiple myeloma who have low (<20 cells/mcl) peripheral blood CD34+ cell count. Blood 114:1252Google Scholar
  220. 220.
    Alexander E, Costa LJ, Taylor M et al (2009) Cost-effective use of plerixafor for hematopoietic stem cells mobilization: development and validation of a decision-making algorithm. Blood 114:1246Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Tumor Diagnostics and Therapy, Paracelsus KlinikOsnabrückGermany
  2. 2.Department of Medicine, Utah Blood and Marrow Transplant and Myeloma ProgramUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations