Advertisement

Solid Oxide Fuel Cells

  • Chendong Zuo
  • Mingfei Liu
  • Meilin Liu
Chapter
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)

Abstract

Solid oxide fuel cells (SOFCs) have potential to be the most efficient and cost-effective system for direct conversion of a wide variety of fuels to electricity. The performance and durability of SOFCs depend strongly on the microstructure and morphology of cell components. As a unique synthesis and processing technique with easy control of composition, structure, morphology, and microstructure, sol-gel processes have been widely used for fabrication of key SOFC materials or critical components with desired properties or functionalities unattainable otherwise. In this chapter, we provide an overview on sol-gel processes applied for preparation of homogeneous and fine powders of electrolyte, electrode, and ceramic interconnect materials, for deposition of dense electrolyte membranes or porous electrode films, and for modification of electrode or metallic interconnect surface or interface to enhance catalytic activity, to improve tolerance to coking or contaminant poisoning, and to increase stability against oxidation, reduction, or other degradation mechanisms. While significant progress has been made in controlling and tailoring the composition, microstructure, morphology, and hence functionality of materials and components, many challenges still remain to make sol-gel processes cost-effective and versatile for many applications. The development of novel sol-gel processes as well as the exploration of the existing ones to new applications continues to be an intriguing research pursuit.

Keywords

Anode Cathode Coatings Electrode/electrolyte interface Electrolyte Gadolinia-doped ceria (GDC) ILTSOFC Lanthanum strontium manganate (LSM) Magnesium doped lanthanum chromate NiO/YSZ Sol-gel Solid oxide fuel cell (SOFC) Surface modification Yttria-stabilized Zirconia (YSZ) 

References

  1. 1.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, Liu ML (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−δ. Science 326(5949):126–129CrossRefGoogle Scholar
  3. 3.
    Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M, Liu P, Bai J, Tyson TA, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:357CrossRefGoogle Scholar
  4. 4.
    Zhe C, Wang JH, Choi YM, Yang L, Lin MC, Liu M (2011) From Ni-YSZ to sulfur-tolerant anodes: electrochemical behavior, modeling, in situ characterization, and perspectives. Energy Environ Sci Perspect Rev 4:4380–4409 Google Scholar
  5. 5.
    Singhal SC (2000) Science and technology of solid-oxide fuel cells. MRS Bull 25(3):16–21CrossRefGoogle Scholar
  6. 6.
    Liu M, Lynch ME, Blinn K, Alamgir F, Choi Y (2011) Rational SOFC material design: new advances and tools. Mat Today Invited Rev 14:534–546 CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32(1):17–28CrossRefGoogle Scholar
  11. 11.
    Xia CR, Liu ML (2002) Novel cathodes for low-temperature solid oxide fuel cells. Adv Mat 14(7):521CrossRefGoogle Scholar
  12. 12.
    (2005) 2004 fuel cell handbook: advanced technology for generating electricity series on renewable energy, biofuels, bioenergy, and biobased products, US Department of Energy, 7th edn. Progressive Management Google Scholar
  13. 13.
  14. 14.
    Pierre AC (1998) Introduction to sol-gel processing. Springer, LondonGoogle Scholar
  15. 15.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing, 1st edn. Academic PressGoogle Scholar
  16. 16.
    Mehrotra RC (1989) In: Aegerter MA, Souza Jr., DF, Zanotto ED (eds) Sol-gel science and technology. World Scientific Publishing Company, SingaporeGoogle Scholar
  17. 17.
    Viazzi C, Deboni A, Ferreira JZ, Bonino JP, Ansart F (2006) Synthesis of Yttria Stabilized Zirconia by sol-gel route: Influence of experimental parameters and large scale production. Solid State Sci 8(9):1023–1028CrossRefGoogle Scholar
  18. 18.
    Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocrystalline ZrO2–8%Y2O3 via a polymerization route. Mat Res Bull 36(12):2083–2101CrossRefGoogle Scholar
  19. 19.
    Steele BCH (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 degrees C. Solid State Ion 129(1–4):95–110CrossRefGoogle Scholar
  20. 20.
    Prasad DH, Son JW, Kim BK, Lee HW, Lee JH (2008) Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol-gel thermolysis process for IT-SOFCs. J Eur Ceram Soc 28(16):3107–3112CrossRefGoogle Scholar
  21. 21.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical chemical and electrochemical properties of pure and doped ceria. Solid State Ion 129(1–4):63–94CrossRefGoogle Scholar
  22. 22.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Preparation and characterization of La1−xSrxMnO3+δ (0 <= x <= 0.6) powder by sol-gel processing. Solid State Sci 4(1):125–133CrossRefGoogle Scholar
  23. 23.
    Xiong L, Wang SR, Wang YS, Wen TL (2008) (Pr0.7Ca0.3)(0.9)MnO3-δ-SDC cathode for IT-SOFC. J Alloy Compd 453(1–2):356–360CrossRefGoogle Scholar
  24. 24.
    Lenormand P, Castillo S, Gonzalez JR, Laberty-Robert C, Ansart F (2005) Lanthanum ferromanganites thin films by sol-gel process. Influence of the organic/inorganic R ratio on the microstructural properties. Solid State Sci 7(2):159–163CrossRefGoogle Scholar
  25. 25.
    Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi MF (2010) Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application. Int J Hydrogen Energy 35(17):9411–9419CrossRefGoogle Scholar
  26. 26.
    Ding C, Lin H, Sato K, Hashida T (2008) Synthesis and characterization of La0.8Sr0.2Co0.8Fe0.2O3 nanoparticles for intermediate-low temperature solid oxide fuel cell cathodes. Water Dyn 987:35–38Google Scholar
  27. 27.
    Meng XW, Lu SQ, Ji Y, Wei T, Zhang YL (2008) Characterization of Pr1−xSrxCo0.8Fe0.2O3−δ (0.2 <= x <= 0.6) cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 183(2):581–585CrossRefGoogle Scholar
  28. 28.
    Vert VB, Serra JM (2009) Influence of Barium incorporation on the electrochemical performance of Ln0.58Sr0.4Fe0.8Co0.2O3−δ) (Ln = La, Pr, Sm) Perovskites for oxygen activation at intermediate temperatures. Fuel Cells 9(5):663–678CrossRefGoogle Scholar
  29. 29.
    Vert VB, Serra JM (2010) Improvement of the Electrochemical Performance of Ln0.58Sr0.4Fe0.8Co0.2O3−δ IT-SOFC Cathodes by Ternary Lanthanide Combinations (La-Pr-Sm). Fuel Cells 10(4):693–702CrossRefGoogle Scholar
  30. 30.
    Zeng PY, Ran R, Zhihao CAH, Zhou W, Gu HX, Shao ZP, Liu SM (2008) Efficient stabilization of cubic perovskite SrCoO3-δ-delta by B-site low concentration scandium doping combined with sol-gel synthesis. J Alloy Compd 455(1–2):465–470CrossRefGoogle Scholar
  31. 31.
    Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173CrossRefGoogle Scholar
  32. 32.
    Zheng MZ, Liu XM, Su WH (2005) Preparation and performance of La1−xSrxCuO3−δ as cathode material in IT-SOFCs. J Alloy Compd 395(1–2):300–303CrossRefGoogle Scholar
  33. 33.
    Zhao L, He BB, Lin B, Ding HP, Wang SL, Ling YH, Peng RR, Meng GY, Liu XQ (2009) High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode. J Power Sources 194(2):835–837CrossRefGoogle Scholar
  34. 34.
    Zhao L, Nian Q, He BB, Lin B, Ding HP, Wang SL, Peng RR, Meng GY, Liu XQ (2010) Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 195(2):453–456CrossRefGoogle Scholar
  35. 35.
    Pena-Martinez J, Tarancon A, Marrero-Lopez D, Ruiz-Morales JC, Nunez P (2008) Evaluation of GdBaCo2O5+δ as Cathode Material for Doped Lanthanum Gallate Electrolyte IT-SOFCs. Fuel Cells 8(5):351–359CrossRefGoogle Scholar
  36. 36.
    Ferkhi M, Khelili S, Zerroual L, Ringuede A, Cassir M (2009) Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−xCuxO4+δ delta materials as new cathodes for solid oxide fuel cells. Electrochim Acta 54(26):6341–6346CrossRefGoogle Scholar
  37. 37.
    Fontaine ML, Laberty-Robert C, Ansart F, Tailhades P (2006) Composition and porosity graded La2−xNiO4+δ (x > = 0) interlayers for SOFC: Control of the microstructure via a sol-gel process. J Power Sources 156(1):33–38CrossRefGoogle Scholar
  38. 38.
    Livage J, Henry M, Sanchez C (1988) Sol-Gel Chemistry of Transition-Metal Oxides. Prog Solid State Chem 18(4):259–341CrossRefGoogle Scholar
  39. 39.
    Shimizu Y, Murata T (1997) Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol). J Am Ceram Soc 80(10):2702–2704CrossRefGoogle Scholar
  40. 40.
    Zhou W, Ran R, Shao ZP, Jin WQ, Xu NP (2010) Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. Bull Mat Sci 33(4):371–376CrossRefGoogle Scholar
  41. 41.
    Suciu C, Hoffmann AC, Dorolti E, Tetean R (2008) NiO/YSZ nanoparticles obtained by new sol-gel route. Chem Eng J 140(1–3):586–592CrossRefGoogle Scholar
  42. 42.
    Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39(14):4405–4439CrossRefGoogle Scholar
  43. 43.
    Wilson JR, Kobsiriphat W, Mendoza R, Chen HY, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7):541–544CrossRefGoogle Scholar
  44. 44.
    Wilkenhoener R, Vassen R, Buchkremer HP, Stover D (1999) Mechanically alloyed Ni/8YSZ powder mixtures: preparation, powder characterization and sintering behavior. J Mat Sci 34(2):257–265CrossRefGoogle Scholar
  45. 45.
    Sun CW, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171(2):247–260CrossRefGoogle Scholar
  46. 46.
    Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mat 22(3):660–674CrossRefGoogle Scholar
  47. 47.
    Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2(5):320–323CrossRefGoogle Scholar
  48. 48.
    Wan J, Zhu JH, Goodenough JB (2006) La0.75Sr0.25Cr0.5Mn0.5O3−δ + Cu composite anode running on H2 and CH4 fuels. Solid State Ion 177(13–14):1211–1217CrossRefGoogle Scholar
  49. 49.
    Zhu XB, Zhe L, Bo W, Chen KF, Liu ML, Huang XQ, Su WH (2010) Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3−δ impregnated anodes. J Power Sources 195(7):1793–1798CrossRefGoogle Scholar
  50. 50.
    Fu XZ, Melnik J, Low QX, Luo JL, Chuang KT, Sanger AR, Yang QM (2010) Surface modified Ni foam as current collector for syngas solid oxide fuel cells with perovskite anode catalyst. Int J Hydrogen Energy 35(20):11180–11187CrossRefGoogle Scholar
  51. 51.
    Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA (2007) Sulfur tolerance and hydrocarbon stability of La0.75Sr0.25Cr0.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization. J Electrochem Soc 154(11):B1206–B1210CrossRefGoogle Scholar
  52. 52.
    Ghouse M, Al-Musa A, Al-Yousef Y, Al-Otaibi MF (2010) Synthesis of Mg doped LaCrO3 nano powders by sol-gel process for solid oxide fuel cell (SOFC) application. J New Mater Electrochem Syst 13(2):99–106Google Scholar
  53. 53.
    Stover D, Buchkremer HP, Uhlenbruck S (2004) Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceram Int 30(7):1107–1113CrossRefGoogle Scholar
  54. 54.
    Kueper TW, Visco SJ, De Jonghe LC (1992) Thin-film ceramic electrolytes deposited on porous and non-porous substrates by sol-gel techniques. Solid State Ion 52(1–3):251–259CrossRefGoogle Scholar
  55. 55.
    Van Gestel T, Sebold D, Meulenberg WA, Buchkremer H-P (2008) Development of thin-film nano-structured electrolyte layers for application in anode-supported solid oxide fuel cells. Solid State Ion 179(11–12):428–437Google Scholar
  56. 56.
    Pan Y, Zhu JH, Hu MZ, Payzant EA (2005) Processing of YSZ thin films on dense and porous substrates. Surf Coat Technol 200(5–6):1242–1247CrossRefGoogle Scholar
  57. 57.
    Peshev P, Slavova V (1992) Preparation of Yttria-stabilized Zirconia thin-films by a sol-gel procedure using alkoxide precursors. Mat Res Bull 27(11):1269–1275CrossRefGoogle Scholar
  58. 58.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P (2006) Thick YSZ films prepared via a modified sol-gel route: thickness control (8–80 μm). J Eur Ceram Soc 26(15):3153–3160CrossRefGoogle Scholar
  59. 59.
    Egger P, Soraru GD, Dire S (2004) Sol-gel synthesis of polymer-YSZ hybrid materials for SOFC technology. J Eur Ceram Soc 24(6):1371–1374CrossRefGoogle Scholar
  60. 60.
    Lenormand P, Rieu M, Cienfuegos RF, Julbe A, Castillo S, Ansart F (2008) Potentialities of the sol-gel route to develop cathode and electrolyte thick layers Application to SOFC systems. Surf Coat Technol 203(5–7):901–904CrossRefGoogle Scholar
  61. 61.
    Vo NXP, Yoon SP, Nam SW, Han J, Lim TH, Hong SA (2005) Fabrication of an anode-supported SOFC with a sol-gel coating method for a mixed-gas fuel cell. On the Convergence of Bio-Information,- Environmental-, Energy- Space- and Nano-Technologies, Pts 1 and 2, 277(–279):455–461Google Scholar
  62. 62.
    Chen YY, Wei WCJ (2006) Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC. Solid State Ion 177(3–4):351–357CrossRefGoogle Scholar
  63. 63.
    Agarwal V, Liu ML (1997) Preparation of barium cerate-based thin films using a modified Pechini process. J Mater Sci 32(3):619–625MathSciNetCrossRefGoogle Scholar
  64. 64.
    Chiba R, Yoshimura F, Yamaki J, Ishii T, Yonezawa T, Endou K (1997) Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol-gel method. Solid State Ion 104(3–4):259–266CrossRefGoogle Scholar
  65. 65.
    Mehta K, Xu R, Virkar AV (1998) Two-layer fuel cell electrolyte structure by sol-gel processing. J Sol-Gel Sci Technol 11(2):203–207CrossRefGoogle Scholar
  66. 66.
    Jang WS, Hyun SH, Kim SG (2002) Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC. J Mater Sci 37(12):2535–2541CrossRefGoogle Scholar
  67. 67.
    Kim SG, Yoon SP, Nam SW, Hyun SH, Hong SA (2002) Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method. J Power Sources 110(1):222–228CrossRefGoogle Scholar
  68. 68.
    Rose L, Kesler O, Tang ZL, Burgess A (2007) Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying. J Power Sources 167(2):340–348CrossRefGoogle Scholar
  69. 69.
    Kim SD, Hyun SH, Moon J, Kim JH, Song RH (2005) Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. J Power Sources 139(1–2):67–72CrossRefGoogle Scholar
  70. 70.
    Moon J, Song HS, Kim WH, Hyun SH, Kim J, Lee HW (2007) Effect of starting particulate materials on microstructure and cathodic performance of nanoporous LSM-YSZ composite cathodes. J Power Sources 167(2):258–264CrossRefGoogle Scholar
  71. 71.
    Xia CR, Zhang YL, Liu ML (2003) LSM-GDC composite cathodes derived from a sol-gel process - Effect of microstructure on interfacial polarization resistance. Electrochem Solid State Lett 6(12):A290–A292CrossRefGoogle Scholar
  72. 72.
    Zha SW, Zhang YL, Liu ML (2005) Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs. Solid State Ion 176(1–2):25–31CrossRefGoogle Scholar
  73. 73.
    Tang ZL, Xie YS, Hawthorne H, Ghosh D (2006) Sol-gel processing of Sr0.5Sm0.5CoO3 film. J Power Sources 157(1):385–388CrossRefGoogle Scholar
  74. 74.
    Yoon SP, Han J, Nam SW, Lim TH, Oh IH, Hong SA, Yoo YS, Lim HC (2002) Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique. J Power Sources 106(1–2):160–166CrossRefGoogle Scholar
  75. 75.
    Sholklapper TZ, Lu C, Jacobson CP, Visco SJ, De Jonghe LC (2006) LSM-infiltrated solid oxide fuel cell cathodes. Electrochem Solid State Lett 9(8):A376–A378CrossRefGoogle Scholar
  76. 76.
    Zhang Q, Martin BE, Petric A (2008) Solid oxide fuel cell composite cathodes prepared by infiltration of copper manganese spinel into porous yttria stabilized zirconia. J Mat Chem 18(36):4341–4346CrossRefGoogle Scholar
  77. 77.
    Matus YB, De Jonghe LC, Jacobson CP, Visco SJ (2005) Metal-supported solid oxide fuel cell membranes for rapid thermal cycling. Solid State Ion 176(5–6):443–449CrossRefGoogle Scholar
  78. 78.
    Tucker MC (2010) Progress in metal-supported solid oxide fuel cells: A review. J Power Sources 195(15):4570–4582CrossRefGoogle Scholar
  79. 79.
    Rieu M, Lenormand P, Panteix PJ, Ansart F (2008) New route to prepare anodic coatings on dense and porous metallic supports for SOFC application. Fuel Cells Bull 2008(12):12–15CrossRefGoogle Scholar
  80. 80.
    Rieu M, Lenormand P, Ansart F, Mauvy F, Fullenwarth J, Zahid M (2008) Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC. J Sol-Gel Sci Technol 45(3):307–313CrossRefGoogle Scholar
  81. 81.
    Marrero-Lopez D, Ruiz-Morales JC, Pena-Martinez J, Canales-Vazquez J, Nunez P (2008) Preparation of thin layer materials with macroporous microstructure for SOFC applications. J Solid State Chem 181(4):685–692CrossRefGoogle Scholar
  82. 82.
    Jiang SP (2002) A comparison of O-2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O-3 electrodes. Solid State Ion 146(1–2):1–22CrossRefGoogle Scholar
  83. 83.
    Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La, Sr)(Co, Fe)O-3-(Ce, Gd)O-3 composite cathodes. Solid State Ion 148(1–2):27–34CrossRefGoogle Scholar
  84. 84.
    Yang L, Liu Z, Wang SZ, Choi YM, Zuo CD, Liu ML (2010) A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. Journal of Power Sources 195(2):471–474CrossRefGoogle Scholar
  85. 85.
    Lane JA, Benson SJ, Waller D, Kilner JA (1999) Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ -delta. Solid State Ion 121(1–4):201–208CrossRefGoogle Scholar
  86. 86.
    Prestat M, Koenig JF, Gauckler LJ (2007) Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3−δ -delta electrodes. Part I: Reaction model and faradaic impedance. J Electroceram 18(1–2):87–101CrossRefGoogle Scholar
  87. 87.
    Lee JW, Liu Z, Yang L, Abernathy H, Choi SH, Kim HE, Liu ML (2009) Preparation of dense and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ -delta (LSCF) films for fundamental studies of SOFC cathodes. J Power Sources 190(2):307–310CrossRefGoogle Scholar
  88. 88.
    Simner SP, Anderson MD, Engelhard MH, Stevenson JW (2006) Degradation mechanisms of La-Sr-Co-Fe-O3SOFC cathodes. Electrochem Solid State Lett 9(10):A478–A481CrossRefGoogle Scholar
  89. 89.
    Kim JY, Sprenkle VL, Canfield NL, Meinhardt KD, Chick LA (2006) Effects of chrome contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode used in solid oxide fuel cells. J Electrochem Soc 153(5):A880–A886CrossRefGoogle Scholar
  90. 90.
    Benson SJ, Waller D, Kilner JA (1999) Degradation of La0.6Sr0.4Fe0.8Co0.2O3−δ in carbon dioxide and water atmospheres. J Electrochem Soc 146(4):1305–1309CrossRefGoogle Scholar
  91. 91.
    Liu M, Liu Z, Liu MF, Nie LF, Mebane DS, Wilson DS, Surdoval W (2010) Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts, US Patent Application No. 12/837,757Google Scholar
  92. 92.
    Lynch ME, Yang L, Qin W, Choi J–J, Liu M, Blinn K, Liu M (2011) Enhancement of La0.6Sr0.4Co0.2Fe0.8O3−δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy Environ Sci 4(6):2249CrossRefGoogle Scholar
  93. 93.
    Lou XY, Wang SZ, Liu Z, Yang L, Liu ML (2009) Improving La0.6Sr0.4Co0.2Fe0.8O3−δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3−δ coating. Solid State Ion 180(23–25):1285–1289CrossRefGoogle Scholar
  94. 94.
    Nie LF, Liu MF, Zhang YJ, Liu ML (2010) La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources 195(15):4704–4708CrossRefGoogle Scholar
  95. 95.
    Choi J–J, Qin W, Liu M, Liu M (2011) Preparation and characterization of (La0.8Sr0.2)0.95MnO3−δ (LSM) thin films and LSM/LSCF interface for solid oxide fuel cells. J Am Ceram Soc 94(10):3340–3345CrossRefGoogle Scholar
  96. 96.
    Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ion 135(1–4):305–313CrossRefGoogle Scholar
  97. 97.
    Gong MY, Liu XB, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168(2):289–298CrossRefGoogle Scholar
  98. 98.
    Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3(1):17–27CrossRefGoogle Scholar
  99. 99.
    Park SD, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404(6775):265–267CrossRefGoogle Scholar
  100. 100.
    Gorte RJ, Vohs JM (2003) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal 216(1–2):477–486CrossRefGoogle Scholar
  101. 101.
    Lu C, Worrell WL, Gorte RJ, Vohs JM (2003) SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. J Electrochem Soc 150(3):A354–A358CrossRefGoogle Scholar
  102. 102.
    Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312(5771):254–257CrossRefGoogle Scholar
  103. 103.
    Pillai MR, Kim I, Bierschenk DM, Barnett SA (2008) Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support. J Power Sources 185(2):1086–1093CrossRefGoogle Scholar
  104. 104.
    Pillai MR, Jiang Y, Mansourian N, Kim I, Bierschenk DM, Zhu HY, Kee RJ, Barnett SA (2008) Solid oxide fuel cell with oxide anode-side support. Electrochem Solid State Lett 11(10):B174–B177CrossRefGoogle Scholar
  105. 105.
    Fu QX, Tietz F, Stover D (2006) La0.4Sr0.6Ti1−xMnxO3-delta-δ perovskites as anode materials for solid oxide fuel cells. J Electrochem Soc 153(4):D74–D83CrossRefGoogle Scholar
  106. 106.
    Yoon SP, Han J, Nam SW, Lim TH, Hong SA (2004) Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel. J Power Sources 136(1):30–36CrossRefGoogle Scholar
  107. 107.
    Zhu JH, Zhang Y, Basu A, Lu ZG, Paranthaman M, Lee DF, Payzant EA (2004) LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications. Surf Coat Technol 177:65–72CrossRefGoogle Scholar
  108. 108.
    Pu JA, Hua B, Zhang WY, Wu JA, Chi B, Jian L (2010) A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. J Power Sources 195(21):7375–7379CrossRefGoogle Scholar
  109. 109.
    Fang Y, Wu C, Duan X, Wang S, Chen Y (2011) High-temperature oxidation process analysis of MnCo2O4 coating on Fe–21Cr alloy. Int J Hydrogen Energy 36(9):5611–5616CrossRefGoogle Scholar
  110. 110.
    Hua B, Kong YH, Lu FS, Zhang JF, Pu JA, Li JA (2010) The electrical property of MnCo2O4 and its application for SUS 430 metallic interconnect. Chin Sci Bull 55(33):3831–3837CrossRefGoogle Scholar

Copyright information

© © Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCenter for Innovative Fuel Cell and Battery Technologies, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations