Sol-Gel Coatings For Electrochromic Devices

Chapter
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)

Abstract

This chapter describes first the principles of electrochromic (EC) devices and then reviews the most important solgel developments related to the preparation and characterisation of the different layers used for the realisation of such devices: transparent conducting coatings, electrochromic coatings, counter electrodes and electrolytes. Finally the review shows how these coatings have been used for the realisation of prototypes and devices such as windows and displays describing their electro-optical properties, their long-term behaviour as well as their advantages and drawbacks. This review is a shorter but updated version based on earlier reviews published by the authors in 1996, 2005 and 2006.

Keywords

Electrochromic coatings Electrolytes Counter electrodes Sol-Gel Electrochromic devices Electrochromic windows Electrochromic displays 

References

  1. 1.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism-fundamentals and applications. VCH Verlagsgesellschaft mbh, WeinheimGoogle Scholar
  3. 3.
    Lampert CM (1999) The world of large-area glazing and displays. In: Proceedings of SPIE, Switchable Materials and Flat Panel Displays, Denver, Colorado, July 21–22. SPIE, vol 3788. Bellingham, Washington, USA, pp 2–11.Google Scholar
  4. 4.
    Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76:489–499CrossRefGoogle Scholar
  5. 5.
    Granqvist CM (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598CrossRefGoogle Scholar
  6. 6.
    Granqvist CG (2001) Electrochromic windows: toward an energy efficient architecture. Interface 3:18–19Google Scholar
  7. 7.
    Azens A, Granqvist CG (2003) Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem 7:64–68Google Scholar
  8. 8.
    Aegerter MA (1996) Sol-Gel chromogenic materials and devices. In: Reisfeld R, Jorgensen CK (eds) Structure and Bonding, vol 85. Springer, Berlin, pp 149–194Google Scholar
  9. 9.
    Heusing S, Aegerter MA (2005) Sol-Gel coatings for electrochromic devices. In: Sakka S (ed), Handbook of Sol-Gel Science and Technology, vol 3. Kluwer Academic Publishers, The Netherlands, pp 719–760Google Scholar
  10. 10.
    Heusing S, Aegerter MA (2006) Stand der Anwendung der Elektrochromie in der Architektur, Proc. des 6. Symposiums Zukunft Glas—Von der Tradition zum High-Tech-Produkt. Otti, Zwiesel, p 72Google Scholar
  11. 11.
    Rauh RD (1999) Electrochromic windows: an overview. Electrochim Acta 44:3165–3176CrossRefGoogle Scholar
  12. 12.
    O´Brian NA, Gordon J, Mathew H, Hichwa BP (1999) Electrochromic coatings-applications and manufacturing issues. Thin Solid Films 345:312–318CrossRefGoogle Scholar
  13. 13.
    Yoshiaki I, Osamu N, Hideyuki K (1998) All-solid electrochromic anti-glare mirror. Murakami Kaimeido Co, US Patent 6, 06, 1168Google Scholar
  14. 14.
    Dornan CA, Habibi H, Lynam NR, McCabe IA (1994) Electrochromic mirrors and devices. Donnelly corporation, WO Patent 95 30 495Google Scholar
  15. 15.
    Bauer FT, Bechtel JH (1984) Automatic rearview mirror for automotive vehicles. Gentex Corporation, US Patent 4, 443, 057Google Scholar
  16. 16.
    Bechtel JH, Byker HJ (1990) Automatic rearview mirror system for automotive vehicles. Gentex Corporation, US Patent 4, 917, 477Google Scholar
  17. 17.
    Byker HJ (1992) Variable reflectance motor vehicle mirror. Gentex Corporation, US Patent 5, 128, 799Google Scholar
  18. 18.
    Byker HJ (1990) Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof. Gentex Corporation, US Patent 4, 902, 108Google Scholar
  19. 19.
    Puetz J, Aegerter MA (2004) Transparent conducting oxide coatings in Sol-Gel technologies for glass producers and users. In: Aegerter MA, Mennig M (ed) Sol-Gel technologies for glass producers and users, Kluwer, The NetherlandsGoogle Scholar
  20. 20.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  21. 21.
    Agrawal A, Cronin JP, Zhang R (1993) Review of solid state electrochromic coatings using Sol-Gel techniques. Sol Energy Mater Sol Cells 31:9–21CrossRefGoogle Scholar
  22. 22.
    Vroon ZAEP, Spee CIMA (1997) Sol-Gel coatings on large area glass sheets for electrochromic devices. J Non-Cryst Solids 218:189–195CrossRefGoogle Scholar
  23. 23.
    Bessière A, Badot JC, Certiat MC, Livage J, Lucas V, Baffier N (2001) Sol-Gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim Acta 46:2251–2256CrossRefGoogle Scholar
  24. 24.
    Kim C-Y, Lee M, Huh S-H, Kim E-K (2010) J Sol-Gel Sci Technol 53:176–183CrossRefGoogle Scholar
  25. 25.
    Cronin JP, Tarico DJ, Agrawal A, Zhang RL (1993) Method for depositing electrochromic layers, US Patent 5, 252, 354Google Scholar
  26. 26.
    Cronin JP, Tarico DJ, Tonazzi JCC, Agrawal A, Kennedy SR (1993) Microstrucure and propewrties of Sol-Gel deposited WO3 coatings for large area electrochromic windows. Sol Energy Mater Sol Cells 29:371–386CrossRefGoogle Scholar
  27. 27.
    Cronin JP, Tarico DJ, Agrawal A, Zhang RL (1994) Method for depositing high performing electrochromic layers, United States Patent 5, 277, 986Google Scholar
  28. 28.
    Schmidt H, Krug H, Merl N, Moses A, Judeinstein P, Berni A (1994) Electrochromic thin-film systems and components thereof. Patent WO 95/28663Google Scholar
  29. 29.
    Munro B, Krämer S, Zapp P, Krug H (1998) Characterization of electrochromic WO3-layers prepared by Sol-Gel nanotechnology. J Sol-Gel Sci Technol 13:673–678CrossRefGoogle Scholar
  30. 30.
    Munro B, Conrad P, Krämer S, Schmidt H, Zapp P (1998) Development of electrochromic cells by the Sol-Gel process. Sol Energy Mater Sol Cells 54:131–137CrossRefGoogle Scholar
  31. 31.
    Heusing S, Munro B, Koch T, Zapp P, Mennig M, Schmidt H (1999) Weiterentwicklung elektrochromer Dünnschichtsysteme auf Glas über naßchemische Verfahren. In: Proceedings of the 73th Glastechnische Tagung, Halle (Saale), Germany, pp 40–43Google Scholar
  32. 32.
    Bell JM, Matthews JP, Skryabin IL, Wang J, Monsma BG (1998) Sol-Gel deposited electrochromic devices. Renew Energy 15:312–317CrossRefGoogle Scholar
  33. 33.
    Bell JM, Skryabin IL, Koplick AJ (2001) Large area electrochromic films—preparation and performance. Sol Energy Mater Sol Cells 68:239–247CrossRefGoogle Scholar
  34. 34.
    Lefheriotis G, Papaefthimiou S, Yianoulis P (2004) Sol Energy Mater Sol Cells 83:115–124CrossRefGoogle Scholar
  35. 35.
    Schmitt M, Heusing S, Aegerter MA, Pawlicka C, Avellaneda CO (1998) Electrochromic properties of Nb2O5 Sol-Gel coatings. Sol Energy Mater Sol Cells 54:9–17CrossRefGoogle Scholar
  36. 36.
    Schmitt M, Aegerter MA (1999) Electrochromic properties of Nb2O5 and Nb2O5 :X (X=Sn, Zr, Li, Ti, Mo). In: Proceedings of the SPIE conference on switchable materials and flat panel displays, Denver, Colorado, July 1999. SPIE, vol 3788. pp 93–102Google Scholar
  37. 37.
    Schmitt M, Aegerter MA (2001) Electrochromic properties of pure and doped Nb2O5 coatings and devices. Electrochim Acta 46:2105–2111CrossRefGoogle Scholar
  38. 38.
    Sun DL, Heusing S, Puetz J, Aegerter MA (2003) Influence of water on the electrochromic properties of Nb2O5:Mo, WO3 and (CeO2)x(TiO2)1−x Sol-Gel coatings and electrochromic devices. Solid State Ionics 165:181–189CrossRefGoogle Scholar
  39. 39.
    Schmitt M, Aegerter MA (1999) Properties of electrochromic devices made with Nb2O5 and Nb2O5:X (X=Li, Ti or Mo) as coloring electrode. In: Procedings of the SPIE conference on switchable materials and flat panel displays. Denver, Colorado, July 1999. SPIE, vol 3788, pp 75–83Google Scholar
  40. 40.
    Dhanasankar M, Purishothaman KK, Muralidharan G (2010) Effect of tungsten on the electrochromic behavior of Sol-Gel dip coated molybdenum oxide thin films. Mater Res Bulletin 45:542–545CrossRefGoogle Scholar
  41. 41.
    Li Y, Kudo T (1995) Electrochromic properties of spin-coated thin films from peroxo-polymolybdovanadate solutions. J Electrochem Soc 142:1194–1199CrossRefGoogle Scholar
  42. 42.
    Dhanasankar M, Purishothaman KK, Muralidharan G (2010) Enhanced electrochromism in cerium doped molybdenum oxide thin films. Mater Res Bull 45:1969–1972CrossRefGoogle Scholar
  43. 43.
    Azens A, Kullmann L, Vaivars G, Nordborg H, Granqvist CG (1998) Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics 113–115:449–456CrossRefGoogle Scholar
  44. 44.
    Svensson JSEM, Granqvist CG (1986) Electrochromic hydrated nickel-oxide coatings for energy-efficient windows—optical-properties and coloration mechanism. Appl Phys Lett 49:1566–1568CrossRefGoogle Scholar
  45. 45.
    Moser FH, Lynam NR (1990) US Patent 4, 959, 247Google Scholar
  46. 46.
    Miki T, Yoshimura K, Tai Y, Tazawa M, Jin P, Tanemura S (1995) Electrochromic properties of nickel oxide thin films prepared by the Sol-Gel method. Proc SPIE 2531:135–142Google Scholar
  47. 47.
    Šurca A, Orel B (1997) Sol-Gel derived hydrated nickel oxide electrochromic films: optical, spectroelectrochemical and structural properties. J Sol-Gel Sci Technol 8:743–749Google Scholar
  48. 48.
    Cerc Koroŝec R, Bukovec P, Pihlar B, Padežnik Gomilšek J (2003) The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the Sol-Gel method: part I. Thermochimica Acta 402:57–67CrossRefGoogle Scholar
  49. 49.
    Cerc Koroŝec R, Bukovec P (2004) The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the Sol-Gel method: part II. Thermochimica Acta 410:65–71CrossRefGoogle Scholar
  50. 50.
    Cerc Koroŝec R, Bukovec P (2006) Sol-Gel prepared NiO films for electrochromic application. Acta Chim Slov 53:137–147Google Scholar
  51. 51.
    Sharma PK, Fantini MCA, Gorenstein A (1998) Synthesis characterization and electrochromic properties of NiOxHy thin film prepared by a Sol-Gel method. Solid State Ionics 113–115:457–463CrossRefGoogle Scholar
  52. 52.
    Sharma PK, Mracia MCA, Fischer H, Craievich AF, Gorenstein A (1999) Factors influencing the electrochromic properties of nickel oxide thin films derived from Sol-Gel methode by dip-coating. Mat Res Soc Symp Proc 547:351–356CrossRefGoogle Scholar
  53. 53.
    Moser FH, Lyman NR (1989) US Patent 4855166 and US Patent 4855161Google Scholar
  54. 54.
    Martini M, Brito GES, Fantini MCA, Craievich AF, Gorenstein A (2001) Electrochromic propertie of NiO-based thin films prepared by Sol-Gel and dip-coating. Electrochim Acta 48:2275–2279CrossRefGoogle Scholar
  55. 55.
    Al-Kalhout A, Heusing S, Aegerter MA (2006) Electrochromism of NiO–TiO2 Sol-Gel layers. J Sol-Gel Sci Technol 39:195–206CrossRefGoogle Scholar
  56. 56.
    Al-Kalhout A, Aegerter MA (2007) Coloration mechanisms of Sol-Gel NiO–TiO2 layers studied by EQCM. Sol Energy Mater Sol Cells 91:213–223CrossRefGoogle Scholar
  57. 57.
    Al-Kalhout A, Pawlicka A, Aegerter MA (2006) Brown coloring electrochromic devices based on NiO-TiO2 layers. Sol Energy Mater Sol Cells 90:3583–3601CrossRefGoogle Scholar
  58. 58.
    Švegl F, Orel B, Kaučič V (2000) Electrochromic properties of lithiated Co-oxide (LixCoO2) and Ni-oxide (LixNiO2) thin films prepared by the Sol-Gel route. Sol Energy 68:523–540CrossRefGoogle Scholar
  59. 59.
    Baudry P, Rodrigues ACM, Aegerter MA, Bulhoes LO (1990) Dip-coated TiO2–CeO2 films as transparent counter electrode for transmissive electrochromic devices. J Non-Cryst Solids 121:319–322CrossRefGoogle Scholar
  60. 60.
    Štangar UL, Orel B, Grabec I, Ogorevc B, Kalcher K (1993) Optical and electrochemical properties of CeO2 and CeO2–TiO2 coatings. Sol Energy Mater Sol Cells 31:171–185CrossRefGoogle Scholar
  61. 61.
    Orel Z, Orel B (1994) Electrochemical and optical properties of Sol-Gel derived CeO2 and mixed CeO2/SnO2 coatings. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII, Bellingham, Washington, USA. SPIE 2255:285–296Google Scholar
  62. 62.
    Pawlicka A, Avellaneda CO (2000) Thin film Sol-Gel of CeO2–ZrO2: the candidate for counter electrode in electrochromic devices. Mol Cryst Liq Cryst 354:1051–1061Google Scholar
  63. 63.
    Berton MAC, Avellaneda CO, Bulhoes LOS (2003) Thin film of CeO2–SiO2: a new ion-storage layer for smart windows. Sol Energy Mater Sol Cells 80:443–449CrossRefGoogle Scholar
  64. 64.
    Opara Krašovec U, Orel B, Reisfeld R (1998) Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the Sol-Gel route. Electrochem Solid-State Lett 1:104–106CrossRefGoogle Scholar
  65. 65.
    Avellaneda CO, Pawlicka A (1998) Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films 335:245–248CrossRefGoogle Scholar
  66. 66.
    Kim C-Y, Cho S-G, Lim T-Y, Choi D-K (2009) Anomalous lithium diffusion into CeO2–TiO2 thin film by film thickness. J Solid Sate Electrochem 13:1165–1170CrossRefGoogle Scholar
  67. 67.
    Sun D-L, Puetz J, Heusing S, Aegerter MA (2002) Influence of water on the electrochemical properties of CeO2–TiO2 Sol-Gel coatings and electrochromic devices. Proc SPIE Sol-Gel Opt VI 4804:17–25Google Scholar
  68. 68.
    Sun D, Heusing S, Aegerter MA (2007) Li+ion exchange in CeO2–TiO2 Sol-Gel layers studied by electrochemical quartz crystal microbalance. Sol Energy Mater Sol Cells 91:1037–1050CrossRefGoogle Scholar
  69. 69.
    Verma A, Samanta SB, Bakhshi AK, Agnihotry SA (2004) Optimization of CeO2–TiO2 compositions for fast switching kinetics and improved Li ion storage capacity. Solid State Ionics 171:81–90CrossRefGoogle Scholar
  70. 70.
    Verma A, Goyal A, Sharma RK (2008) Microstructural, photocatalysis and electrochelical investigations on CeTi2O6 thin films. Thin Solid Films 516:4925–4933CrossRefGoogle Scholar
  71. 71.
    Verma A, Bakhshi AK, Agnihotry SA (2006) Effect of different precursor sols on the properties of CeO2–TiO2 films for electrochromic window application. Electrochim Acta 51:4639–4648CrossRefGoogle Scholar
  72. 72.
    Berton MAC, Avellaneda CO (2001) Electrochemical properties of CeO2–SnO2 and CeO2–SnO2:X (X = Li, C, Si) films. Mater Res 4:241–244Google Scholar
  73. 73.
    Opara Krašovec U, Šurca Vuk A, Orel B (2002) Comparative studies of “all Sol-Gel” electrochromic windows employing various counter electrodes. Sol Energy Mater Sol Cells 73:21–37CrossRefGoogle Scholar
  74. 74.
    Šurca A, Orel B, Opara Krašovec U, Lavrenčič Štangar U (2000) Electrochromic and structural studies of nanocrystalline Fe/V (1:2)-oxide and crystalline Fe2V4O13 films. J Electrochem Soc 147:2358CrossRefGoogle Scholar
  75. 75.
    Opara Krašovec U, Orel B, Hočevar S, Muševič I (1997) Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. J Electrochem Soc 144:3398–3409CrossRefGoogle Scholar
  76. 76.
    Yang Y, Zhu Q, Jin A, Chen W (2008) High capacity and contrast of electrochromic tungsten-doped vanadium oxide films. Solid State Ionics 179:1250–1255CrossRefGoogle Scholar
  77. 77.
    Jin A, Chen W, Zhu Q (2009) High Li+-ion storage capacity and multi-electrochromism behaviour of electrodeposited molybdenum doped vanadium oxide films. Advan Mater Res 79–82:799–802CrossRefGoogle Scholar
  78. 78.
    Kim S, Taya M, Xu C (2009) Contrast, switching speed and durability of V2O5–TiO2 film-based electrochromic windows. J Electrochem Soc 156:E40–E45CrossRefGoogle Scholar
  79. 79.
    Bell JM, Skryabin IL (1999) Failure modes of Sol-Gel deposited electrochromic devices. Sol Energy Mater Sol Cells 56:437–448CrossRefGoogle Scholar
  80. 80.
    Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Antimony-doped tin oxide powders: electrochromic materials for printed displays. Sol Energy Mater Sol Cells 156:375–394Google Scholar
  81. 81.
    Doeuff S, Sanchez C (1989) Electrochromic properties of anatase TiO2 films prepared by the Sol-Gel process. CR Acad Sci II 309:531–534Google Scholar
  82. 82.
    Özer N (1992) Reproducibility of the coloration processes in TiO2 films. Thin Solid Films 214:17–24CrossRefGoogle Scholar
  83. 83.
    Verma A, Basu A, Bakhshi AK, Agnihotry SA (2005) Structural, optical and electrochemical properties of Sol-Gel derived TiO2 films: annealing effects. Solid State Ionics 176:2285–2295CrossRefGoogle Scholar
  84. 84.
    Verma A, Kar M, Agnihotry SA (2007) Aging effect of diethanolamine stabilized sol on different properties of TiO2 films. Electrochromic appl Sol Energy Mater Solar Cells 91:1305–1312CrossRefGoogle Scholar
  85. 85.
    Zelazowska E, Rysiakiewics-Pasek E (2009) Thin TiO2 films for an electrochromic system. Opt Mater 31:1802–1804CrossRefGoogle Scholar
  86. 86.
    O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  87. 87.
    Hagfeld A, Vlachopoulos N, Gilbert S, Grätzel M (1994) Electrochromic switching with nanocrystalline TiO2 semiconductor films. In: Proceedings of SPIE, optical materials technology for energy efficiency and solar energy conversion XIII, SPIE, vol 2255. Bellingham, Washington, USA pp 297–303Google Scholar
  88. 88.
    Marguerettaz X, O´Neill R, Fitzmaurice DJ (1994) Heterodyads—electron-transfer at a semiconductor electrode liquid electrolyte interface modified by an adsorbed spacer acceptor complex. J Am Chem Soc 116:2629–2630CrossRefGoogle Scholar
  89. 89.
    Hagfeld A, Vlachopoulos N, Grätzel M (1994) Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc 141:L82–L84CrossRefGoogle Scholar
  90. 90.
    Cinnsealach R, Boschloo G, Rao SN, Fitzmaurice D (1998) Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol Energy Mater Sol Cells 55:215–233CrossRefGoogle Scholar
  91. 91.
    Fitzmaurice D, Rao SN, Cinnsealach R, Enright B (1998) Eur Pat Applications 98/9032735Google Scholar
  92. 92.
    Cummins D, Boschloo G, Ryan M, Corr D, Rao SN, Fitzmaurice D (2000) Ultrafast electrochromic windows based on redox-chromophore modified nanstructured semiconducting and conducting films. J Phys Chem B 104:11449–11459CrossRefGoogle Scholar
  93. 93.
    Bach U, Corr D, Lupo D, Pichot F, Ryan M (2002) Nanomaterials-based electrochromics for paper-quality displays. Adv Mater 14:845–848CrossRefGoogle Scholar
  94. 94.
    Corr D, Bach U, Fay D, Kinsella M, McAtamney C, O´Reilly F, Rao SN, Stobie N (2003) Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ionics 165:315–321CrossRefGoogle Scholar
  95. 95.
    Xiong S, Phua SL, Dunn BS, Ma J, Lu X (2010) Covalently bonded polyaniline–TiO2 hybrids: a facile approach to highly stable anodic electrochromic materials with low oxidation potentials. Chem Mater 22:255–260CrossRefGoogle Scholar
  96. 96.
    Hwang T, Lee H, Kim H, Kim G, Mun G (2010) Enhancement of electrochemical durability of a film made of silica-polyaniline core-shell nanoparticles. Surf Review Lett 17:39–44CrossRefGoogle Scholar
  97. 97.
    Shiping L, Lin X, Bingbing X (2009) Electrochromism of polyoxometalates. Prog Chem 21:1458–1464Google Scholar
  98. 98.
    Ghodsi FE, Tepehan FZ, Tepehan GG (2008) Electrochromic properties of heat-treatment thin fims of CeO2–TiO2–ZrO2 prepared by Sol-Gel route. Sol Energy Mater Sol Cells 92:234–239CrossRefGoogle Scholar
  99. 99.
    Akhavan D, Tohidi H, Moshlegh AZ (2009) Synthesis and electrochromic study of Sol-Gel cuprous oxide nanoparticles accumulated on silica thin films. Thin Solid Films 517:6700–6706CrossRefGoogle Scholar
  100. 100.
    Granqvist CG (1993) Electrochromics and smart windows. Solid State Ionics 60:213–214CrossRefGoogle Scholar
  101. 101.
    Vaivars G, Furlani M, Mellander B-E, Granqvist CG (2003) Proton-conducting zirconium phosphate/ poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem 7:724–728CrossRefGoogle Scholar
  102. 102.
    Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state- of- the- art review. Sol Energy Mater Sol Cells 94:87–105CrossRefGoogle Scholar
  103. 103.
    Özer N, He Y, Lampert CM (1994) Ionic conductivity of tantalum oxide films prepared by the Sol-Gel process for electrochromic devices. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII 2255:456–466Google Scholar
  104. 104.
    Özer N, Lampert CM (1997) Structural and optical properties of Sol-Gel deposited proton conducting Ta2O5 films. J Sol-Gel Sci Technol 8:703–709Google Scholar
  105. 105.
    Hirano S, Yogo T, Sakamoto W, Takeichi Y, Ono S (2004) Processing of highly oriented LiNbO3 thin films through a metal-organic precursor solution. J Eur Ceramic Soc 24:435–440CrossRefGoogle Scholar
  106. 106.
    Granqvist CG, Avendaño E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442:201–211CrossRefGoogle Scholar
  107. 107.
    Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol-Gel Sci Technol 8:711–715Google Scholar
  108. 108.
    Judeinstein P, Titman J, Stamm M, Schmidt H (1994) Investigation of ion-conducting ormolytes: structure-property relationships. Chem Mater 6:127–134CrossRefGoogle Scholar
  109. 109.
    Heusing S, Niegisch N, Zapp P, Mennig M, Schmidt H, Krings LHN, Aartsen HJ (2000) Zur Entwicklung eines großflächigen elektrochromen Displayfensters aus Glas. In: Proceedings 74th Glastechnische Tagung Ulm, Germany, pp 278–281Google Scholar
  110. 110.
    Mennig M, Fink-Straube C, Heusing S, Kalleder A, Koch T, Munro B, Zapp P, Schmidt H (1999) Large area decorative and functional Sol-Gel coatings on glass. Thin Solid Films 1:343–344Google Scholar
  111. 111.
    Mennig M, Heusing S, Zapp P, Niegisch N, Schmidt H (2000) “Fabrication of large area, curved electrochromic modules for automotive application”. In: Proceedings 3rd International Conference on Coatings on Glass (ICCG), Maastricht, The Netherlands, p 787Google Scholar
  112. 112.
    Orel B, Opara Krašovec U, Lavrenčič Štangar U, Judeinstein P (1998) All Sol-Gel electrochromic devices with Li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J Sol-Gel Sci Technol 11:87–104CrossRefGoogle Scholar
  113. 113.
    Grošelj N, Gaberšček M, Opara Krašovec U, Orel B, Dražič G, Judeinstein P (1999) Electrical and IR spectroscopic studies of peroxopolytungstic acid/organic-inorganic hybrid gels. Solid State Ionics 125:125–133CrossRefGoogle Scholar
  114. 114.
    Orel B, Šurca Vuk A, Jese R, Lianos P, Stathatos E, Judeinstein P, Colomban Ph (2003) Development of Sol-Gel redox I3 /I electrolytes and their application in hybrid electrochromic device. Solid State Ionics 165:235–246CrossRefGoogle Scholar
  115. 115.
    Souza FL, Aegerter MA, Leite ER (2007) Solid hybrid polyelectrolyte with high performance in electrochromic devices: electrochemical stability and optical study. Sol Energy Mater Sol Cells 91:1825–1830 (also Electrochimica Acta 53:1635–1642)CrossRefGoogle Scholar
  116. 116.
    Barbosa P, Rodrigues L, Silva M, Smith M, Gonçalves A, Fortunato E (2010) Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. J Mater Chem 20:723–730 (See also Electrochimica Acta (2009) 54:1002–1009CrossRefGoogle Scholar
  117. 117.
    Costa RGF, Avellaneda CO, Pawlicka A, Heusing S, Aegerter MA (2008) Optoelectrochemical characterization of electrochromic devices with starch based solid electrolytes. Molec Cryst Liq Cryst 447:363–371Google Scholar
  118. 118.
    Avellaneda CO, Vieira DF, Al-Kalhout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid-state electrochromic devices with gelatine-based electrolyte. Sol Energy Mater Sol Cells 92:228–233 (also Electrochimica Acta (2007) 53:1648–1654)CrossRefGoogle Scholar
  119. 119.
    Al-Kalhout A, Vieira DF, Avellaneda CO, Leite ER, Aegerter MA, Pawlicka A (2010) Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16:13–19CrossRefGoogle Scholar
  120. 120.
    Raphael E, Avellaneda CO, Aegerter MA, Silva MM, Pawlicka A (2012) Agar-based gel electrolyte for electrochromic device application. Mol Cryst Liq Cryst 554:1–9CrossRefGoogle Scholar
  121. 121.
    de Vries GC (1999) Electrochromic variable transmission glass for picture tubes. Electrochim Acta 44:3185–3195CrossRefGoogle Scholar
  122. 122.
    Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Sol Energy Mater Sol Cells 56:309–319CrossRefGoogle Scholar
  123. 123.
    Czanderna AW, Benson DK, Jorgensen GJ, Zhang J-G, Tracy CE, Deb SK (1999) Durability issues and service lifetime prediction of electrochromic windows for buildings applications. Sol Energy Mater Sol Cells 56:419–436CrossRefGoogle Scholar
  124. 124.
    Lynam NR, Agrawal A (1988) Automotive applications of chromogenic materials. In: Lampert CM, Granqvist CG, (eds) Proceedings of SPIE large-area chromogenics: materials and devices for transmittance control, Bellingham, Washington, USA, IS vol 4. pp 46–84Google Scholar
  125. 125.
    Lynam NR (1990) Smart windows for automobiles. In: International Congress and Exposition Detroit, Michigan 1990, SAE Technical Paper series (900419)Google Scholar
  126. 126.
    Judeinstein P, Livage J, Zarndiansky A, Rose R (1988) An “all gel” electrochromic device. Solid State Ionics 28–30 (part 2):1722–1725Google Scholar
  127. 127.
    Özer N, Tepehan F, Bozkurt N (1992) An “all-gel” electrochromic device. Thin Solid Films 219:193–198CrossRefGoogle Scholar
  128. 128.
    Macêdo MA, Aegerter MA (1994) Sol-Gel electrochromic device. J Sol-Gel Sci Technol 2:667–671CrossRefGoogle Scholar
  129. 129.
    Avellaneda CO, Dahmouche K, Bulhoes LOS, Pawlicka A (2000) Characterization of an all Sol-Gel electrochromic device WO3/ormolyte/CeO2–TiO2. J Sol-Gel Sci Technol 19:447–451CrossRefGoogle Scholar
  130. 130.
    Heusing S, Munro B, Zapp P, Mennig M, Schmidt H (1998) Effect of ITO and FTO conductive layers on switching properties of large area Sol-Gel electrochromic devices. In: Proceedings of International Meeting on Electrochromism, IME-3 (abstract)Google Scholar
  131. 131.
    Heusing S, Sun D-L, Otero-Anaya J, Aegerter MA (2006) Grey, brown and blue colouring Sol-Gel electrochromic devices. Thin Solid Films 502:240–245CrossRefGoogle Scholar
  132. 132.
    Orel B, Šurca A, Opara Krašovec U (1998) Recent progress in Sol-Gel derived electrochromic devices. Acta Chim Slov 45:487–506Google Scholar
  133. 133.
    Orel B, Opara Krašovec U, Maček M, Švegl F, Lavrenčič Štangar U (1999) Comparative studies of “all Sol-Gel” electrochromic devices with optically passive counter-electrode films, ormolyte Li+ ion-conductor and WO3 or Nb2O5 electrochromic films. Sol Energy Mater Sol Cells 56:343–373CrossRefGoogle Scholar
  134. 134.
    Özer N, Lampert CM (1998) Electrochemical characterization of Sol-Gel deposited coatings. Sol Energy Mater Sol Cells 54:147–156CrossRefGoogle Scholar
  135. 135.
    Al-Kalhout A, Heusing S, Aegerter MA (2006) Brown colouring electrochromic devices based on Sol-Gel NiO-TiO2 layers. In: Aegerter MA, Kirchoff V (ed) Proceedings 6th International Conference on Coatings on Glass and Plastics, Dresden, pp 161–164Google Scholar
  136. 136.
    Penyat P, Leyland N, McCormack DE, Colreavy J, Corr D, Pilai SC (2010) Rapid microwave synthesis of mesoporous TiO2 for electrochromics displays. J Mater Chem 20:3650–3655CrossRefGoogle Scholar
  137. 137.
  138. 138.
    Edwards MOM, Boschloo G, Gruszecki T, Petterson H, Sohlberg R, Hagfeldt A (2001) “Electric-paint displays” with carbon counter electrode. Electrochim Acta 46:2187–2193CrossRefGoogle Scholar
  139. 139.
    Georg A, Graf W, Opara Krasovec U, Schulz J, Orel B, Wittwer V (2004) Gasochromic coatings, in Sol-Gel technologies for glass producers and users. In: Aegerter MA, Mennig M (ed) Sol-Gel technologies for glass producers and users, Kluwer, The NetherlandsGoogle Scholar
  140. 140.
    Kraft A, Rottmann M, Heckner KH (2006) Large-area electrochromic glazing with ion-conducting PVB interlayer and two complementary electrodeposited electrochromic layers. Sol Energy Mater Sol Cells 90:469. http://www.gesimat.de Google Scholar
  141. 141.
  142. 142.

Copyright information

© © Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Optical Materials GroupINM–Leibniz Institute for New MaterialsSaarbrueckenGermany
  2. 2.Ch. des Placettes 6BottensSwitzerland

Personalised recommendations