Nanotribology is a study on friction phenomena occurring at nanometer scale. The distinction between nanotribology and conventional tribology is primarily due to the effect of surface forces in the determination of the adhesion and friction behavior of the system. Commercial bearings and lubricating oils reduce friction in the macroscopic machines; however, the tribological issues on small devices such as microelectromechanical systems and nanoelectromechanical systems require other solutions. Their high surface-to-volume ratio leads to severe adhesion and friction issues, which dramatically reduce their reliability and lifetime. This chapter reviews the basic concepts for handling the adhesion and friction issues at nanoscale. A brief summary on analytical models of single-asperity contact as well as the basic concepts on the surface forces occurring at nanometer gap are discussed in the first two sections, followed by three case studies: (1) experimental measurements on adhesion and friction at single-asperity contact, (2) experimental measurements on adhesion at multi-asperity contact, and (3) biomimetics: controlling nano-adhesion and nano-friction.


Water Contact Angle Adhesion Force Real Contact Area Flat Sample Single Asperity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Next Generation Robotics and Automation program and was performed in part in the NIST Center for Nanoscale Science and Technology Nano Fabrication Clean Room.


  1. 1.
    Maboudian R (1998) MRS Bull 23:47–51Google Scholar
  2. 2.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic, Boston, MAGoogle Scholar
  3. 3.
    Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A 324:301–313CrossRefGoogle Scholar
  6. 6.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314–326CrossRefGoogle Scholar
  7. 7.
    Bhushan B (1999) Handbook of micro/nanotribology, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  8. 8.
    Tabor D (1977) J Colloid Interface Sci 58(1):2–13CrossRefGoogle Scholar
  9. 9.
    Maugis D (1992) J Colloid Interface Sci 150:243–269CrossRefGoogle Scholar
  10. 10.
    Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Clarendon, OxfordGoogle Scholar
  11. 11.
    Maboudian R, Howe RT, Vac J (1997) Sci Technol B 15(1):1–20CrossRefGoogle Scholar
  12. 12.
    Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) PNAS 99(19):12252–12256CrossRefGoogle Scholar
  13. 13.
    Yamada S, Israelachvili JN, Phys J (1998) Chem B 102:234–244CrossRefGoogle Scholar
  14. 14.
    Myshkin NK, Petrokovets MI, Chizhik SA (1999) Tribol Int 32:379–385CrossRefGoogle Scholar
  15. 15.
    Ando Y, Ino J (1997) J Tribol 119:781–787CrossRefGoogle Scholar
  16. 16.
    Yoon E-S, Yang SH, Han H-G, King H (1991) Wear 254:974–980CrossRefGoogle Scholar
  17. 17.
    Ducker WA, Senden TJ, Pashley RM (1991) Nature 353:239–241CrossRefGoogle Scholar
  18. 18.
    Fuller KNG, Tabor D (1975) Proc R Soc Lond Ser A 345:327–342CrossRefGoogle Scholar
  19. 19.
    Briscoe BJ, Panesar SS (1992) J Phys D Appl Phys 25:A20–A27CrossRefGoogle Scholar
  20. 20.
    Neto C, Craig VSJ (2001) Langmuir 17:2097–2099CrossRefGoogle Scholar
  21. 21.
    Cleveland J, Manne S (1993) Rev Sci Instrum 64:403–405CrossRefGoogle Scholar
  22. 22.
    Bora CK, Flater EE, Street MD, Redmond JM, Starr MJ, Carpick RW, Plesha ME (2005) Tribol Lett 19:37–48CrossRefGoogle Scholar
  23. 23.
    Greenwood JA (1992) Problems with surface roughness. In: Singer IL, Polack HM (eds) Fundamentals of friction, macroscopic and microscopic processes. Kluwer, Dordrecht, pp 57–76CrossRefGoogle Scholar
  24. 24.
    Allwood J (2005) ASME J Tribol 127:10–23CrossRefGoogle Scholar
  25. 25.
    Yang SH, Zhang H, Hsu SM (2005) Langmuir 23:1195–1202CrossRefGoogle Scholar
  26. 26.
    Bhushan B (1999) Wear 225:465–492CrossRefGoogle Scholar
  27. 27.
    Spencer ND, Lee S, Perry SS, Lim MS (2002) Proceedings of the second international workshop on Microtribology, Ishigaki Island, Japan, 16–19 April 2002Google Scholar
  28. 28.
    Neinhuis C, Barthlott W (1997) Ann Bot 79:667–677CrossRefGoogle Scholar
  29. 29.
    Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Thin Solid Films 376:140–143CrossRefGoogle Scholar
  30. 30.
    Nakajima A, Saiki C, Hashimoto K, Watanabe T, Mater J (2001) Sci Lett 20:1975–1977CrossRefGoogle Scholar
  31. 31.
    Michael R, Stulik D (1986) J Vac Sci Technol A 4:1861–1865CrossRefGoogle Scholar
  32. 32.
    Extrand CW (2002) Langmuir 18:7991–7999CrossRefGoogle Scholar
  33. 33.
    Cho JS, Choi WK, Koh SK, Yoon KH (1998) J Vac Sci Technol B 16:1110–1114CrossRefGoogle Scholar
  34. 34.
    Yoon E-S, Yang SH, King H, Kim K-H (1998) Tribol Lett 15(2):145–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Head Disk InterfaceSeagate TechnologiesShakopeeUSA
  2. 2.Center for BioMicrosystemsKorea Institute of Science and TechnologySeongbuk-gu, SeoulRepublic of Korea

Personalised recommendations