Tribology of Green Lubricants

  • Jagadeesh K. Mannekote
  • Pradeep L. Menezes
  • Satish V. Kailas
  • Sathwik R. K. Chatra 


Increased demand to protect the environment from mineral oil based lubricants has necessitated replacing them with products derived from natural resources. In addition to this a combination of environmental, health, and economic challenges has also renewed interest in the development and use of green lubricants over the last two decades. This chapter gives an overview of green lubricants beginning from their ancient use to the challenges prospective of the lubricant industry. The review includes structural and chemical properties of important vegetable oils and chemical modification of vegetable oils. Tribological behavior of products based on vegetable oils, green additives, and ionic liquids under varied testing conditions is also presented. This study also gives an insight into the testing procedures and sustainability aspects of green lubricants and additives.


Ionic Liquid Antiwear Property Zinc Dialkyl Dithio Phosphate High Viscosity Index AISI304 Austenitic Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wills JG (1980) Lubrication fundamentals. Marcel Dekker, New York, pp 1–2Google Scholar
  2. 2.
    Bastian ELH (1968) Lubr Eng 25(7):278Google Scholar
  3. 3.
    Dowson D (1979) History of tribology. Longmans Green, New York, pp 125–254Google Scholar
  4. 4.
    Woodbury RS (1959) History of the grinding machine. MIT Press, Cambridge, MA, pp 13–23Google Scholar
  5. 5.
    McCoy JS (2006) Introduction: tracing the historical development of metal working fluids. In: Jerry PB (ed) Taylor and fransis group boca raton, CRC Press, FL. Metal working fluids, CRC, pp 1–18Google Scholar
  6. 6.
    Boyde S (2002) Green lubricants, environmental benefits and impacts of lubrication. Green Chem 4:293–307. doi: 10.1039/b202272a CrossRefGoogle Scholar
  7. 7.
    ANSI/ISO 14043:2000 (E), Environmental management - Life cycle assessment—Life cycle interpretation, First Edition (2000), NSF InternationalGoogle Scholar
  8. 8.
    International Organization for Standardization. ISO 14040Google Scholar
  9. 9.
    Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289. doi: 10.1039/B005650M CrossRefGoogle Scholar
  10. 10.
    Goyan RL, Melley RE, Wissner PA, Ong WC (1998) Biodegradable lubricants. Lubr Eng 54(7):10–17Google Scholar
  11. 11.
    Lea CW (2002) European development of lubricants from renewable sources. Ind Lubr Tribol 54(6):268–274. doi: 10.1108/00368790210445632 CrossRefGoogle Scholar
  12. 12.
    Pettersson A (2007) High-performance base fluids for environmentally adapted lubricants. Tribol Int 40:638–645. doi: 10.1016/j.triboint.2005.11.016 CrossRefGoogle Scholar
  13. 13.
    Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crop Prod 11(2–3):277–282. doi: 10.1016/S0926-6690(99)00061-8 CrossRefGoogle Scholar
  14. 14.
    Bartz WJ (1998) Lubricants and the environment. Tribol Int 31:35–47. doi: 10.1016/S0301-679X(98)00006-1 CrossRefGoogle Scholar
  15. 15.
    Anand ON, Chhibber VK (2006) Vegetable oil derivatives: environment-friendly lubricants and fuels. J Synth Lubr 23:91–107. doi: 10.1002/jsl.14 CrossRefGoogle Scholar
  16. 16.
    Wilson B (1998) Lubricants and functional fluids from renewable resources. Ind Lubr Tribol 50:6–15. doi: 10.1108/00368799810781274 CrossRefGoogle Scholar
  17. 17.
    Schneider MP (2006) Plant-oil-based lubricants and hydraulic fluids. J Sci Food Agric 86:1769–1780. doi: 10.1002/jsfa.2559 CrossRefGoogle Scholar
  18. 18.
    Schuchardta U, Ricardo S, Rogerio MV (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(3):199–210. doi: 10.1590/S0103-50531998000300002 Google Scholar
  19. 19.
    Gryglewicz S (2000) Synthesis of dicarboxylic and complex esters by transesterification. J Synth Lubr 17(3):191–200. doi: 10.1002/jsl.3000170303 CrossRefGoogle Scholar
  20. 20.
    Behr A, Westfechtel A, Gomes JP (2008) Catalytic processes for the technical use of natural fats and oils. Chem Eng Technol 31(5):700–714. doi: 10.1002/ceat.200800035 CrossRefGoogle Scholar
  21. 21.
    Wagner H, Luther R, Mang T (2001) Lubricant base fluids based on renewable raw materials their catalytic manufacture and modification. Appl Catal Gen 221(1–2):429–442. doi: 10.1016/S0926-860X(01)00891-2 CrossRefGoogle Scholar
  22. 22.
    Johansson LE, Lundin ST (1979) Copper catalysts in the selective hydrogenation of soybean and rapeseed oils: I. The activity of the copper chromite catalyst. J Am Oil Chem Soc 56(12):974–980. doi: 10.1007/BF02674147 CrossRefGoogle Scholar
  23. 23.
    Hwang H-S, Erhan SZ (2001) Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J Am Oil Chem Soc 78(12):1179–1184. doi: 10.1007/s11745-001-0410-0 CrossRefGoogle Scholar
  24. 24.
    Johnson RW, Fritz E (1988) Fatty acids in industry. Marcel Dekker, New York, p 667Google Scholar
  25. 25.
    Pryde EH (1984) Hydroformylation of unsaturated fatty acids. J Am Oil Chem Soc 61(2):419–425. doi: 10.1007/BF02678807 CrossRefGoogle Scholar
  26. 26.
    Metzger JO, Biermann U (1993) Alkylaluminium dichloride induced friedel-crafts acylation of unsaturated carboxylic acids and alcohols. Liebigs Annalen der Chemie 1993(6):645–650. doi: 10.1002/jlac.1993199301105 CrossRefGoogle Scholar
  27. 27.
    ASTM D2670 Standard test method for measuring wear properties of fluid lubricants (Falex Pin and Vee Block Method). ASTM International, West Conshohocken, 2011Google Scholar
  28. 28.
    ASTM D4172 Standard test method for wear preventive characteristics of lubricating fluid (Four-Ball Method). ASTM International, West Conshohocken, 2011Google Scholar
  29. 29.
    ASTM D5182 Standard test method for evaluating the scuffing load capacity of oils (FZG Visual Method). ASTM International, West Conshohocken, 2011Google Scholar
  30. 30.
    ASTM D7043 Standard test method for indicating wear characteristics of non-petroleum and petroleum hydraulic fluids in a constant volume vane pump. ASTM International, West Conshohocken, 2011Google Scholar
  31. 31.
    ASTM D2782 Standard test method for measurement of extreme-pressure properties of lubricating fluids (Timken Method). ASTM International, West Conshohocken, 2011Google Scholar
  32. 32.
    ASTM D2783 Standard test method for measurement of extreme-pressure properties of lubricating fluids (Four-Ball Method). ASTM International, West Conshohocken, 2011Google Scholar
  33. 33.
    ASTM D3233 Standard test methods for measurement of extreme pressure properties of fluid lubricants (Falex Pin and Vee Block Methods). ASTM International, West Conshohocken, 2011Google Scholar
  34. 34.
    ASTM D6121 Standard test method for evaluation of load-carrying capacity of lubricants under conditions of low speed and high torque used for final hypoid drive axles. ASTM International, West Conshohocken, 2011Google Scholar
  35. 35.
    ASTM D6425 Standard test method for measuring friction and wear properties of extreme pressure (EP) lubricating oils using SRV test machine. ASTM International, West Conshohocken, 2011Google Scholar
  36. 36.
    Battersby NS (2000) The biodegradability and microbial toxicity testing of lubricants: some recommendations. Chemosphere 41:1011–1027. doi: 10.1016/S0045-6535(99)00517-2 CrossRefGoogle Scholar
  37. 37.
    Battersby NS, Ciccognani D, Evans MR, King D, Painter HA, Peterson DR, Starkey M (1999) An inherent biodegradability test for oil products: description and results of an international ring test. Chemosphere 38:3219–3235. doi: 10.1016/S0045-6535(98)00552-9 CrossRefGoogle Scholar
  38. 38.
    ASTM D6139 Standard test method for determining the aerobic aquatic biodegradation of lubricants or their components using the gledhill shake flask. ASTM International, West ConshohockenGoogle Scholar
  39. 39.
    ASTM D6139 (2011) Standard test method for predicting biodegradability of lubricants using a bio-kinetic model. ASTM International, West ConshohockenGoogle Scholar
  40. 40.
  41. 41.
    Schmitz RPH, Eisentrager A, Lindvogt T, Moller M, Dott W (1998) Increase in the toxic potential of synthetic ester lubricant oils by usage: application of the aquatic bioassays and chemical analysis. Chemosphere 36:1513–1522. doi: 10.1016/S0045-6535(97)10049-2 CrossRefGoogle Scholar
  42. 42.
    Willing A (2001) Lubricants based on renewable resources-an environmentally compatible alternative to mineral oil products. Chemosphere 43:89–98. doi: 10.1016/S0045-6535(00)00328-3 CrossRefGoogle Scholar
  43. 43.
    ASTM D6081-04 (2011) Standard test method for aquatic toxicity testing of lubricants: sample preparation and results interpretation. ASTM International, West ConshohockenGoogle Scholar
  44. 44.
  45. 45.
    Reeves CJ, Menezes PL, Jen T-C, Lovell MR (2012) Evaluating the tribological performance of green liquid lubricants and powder additives based green liquid lubricants, 2012 STLE annual meeting & exhibition (STLE2012), St. Louis, USAGoogle Scholar
  46. 46.
    Honary LAT (1996) An investigation of the use of soybean oil in hydraulic systems. Bioresour Technol 56:41–47. doi: 10.1016/0960-8524(95)00184-0 CrossRefGoogle Scholar
  47. 47.
    Arnsek A, Vizintin J (2000) Lubrication properties of rapeseed-based oils. J Synth Lubr 16(4):281–296. doi: 10.1002/jsl.3000160402 CrossRefGoogle Scholar
  48. 48.
    Krzan B, Vizintin J (2003) Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil. Tribol Int 36:827–833. doi: 10.1016/S0301-679X(03)00100-2 CrossRefGoogle Scholar
  49. 49.
    Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metal working fluids in machining ferrous metals—a review. Int J Mach Tool Manuf 52:1–12. doi: 10.1016/j.ijmachtools.2011.09.003 CrossRefGoogle Scholar
  50. 50.
    Xavior MA, Adithan M (2009) Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI304 austentic stainless steel. J Mater Process Technol 209:900–909. doi: 10.1016/j.jmatprotec.2008.02.068 CrossRefGoogle Scholar
  51. 51.
    Kuram E, Ozcelik B, Demirbas E, Sik E (2010) Effects of the cutting fluid types and cutting parameters on surface roughness and thrust force. Proceedings of the WCE 2010, London, UK, vol II, 30 Jun–2 Jul 2010Google Scholar
  52. 52.
    VamsiKrishna P, Srikant RR, Nageswara Rao D (2010) Experimental investigation on the performance of nano boric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int J Mach Tool Manuf 50(10):911–916. doi: 10.1016/j.ijmachtools.2010.06.001 CrossRefGoogle Scholar
  53. 53.
    Khan MMA, Mithu MAH, Dhar NR (2009) Effects of minimum quantity lubrication on turning AISI9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol 209:5573–5583. doi: 10.1016/j.jmatprotec.2009.05.014 CrossRefGoogle Scholar
  54. 54.
    Avila RF, Abrao AM (2001) The effect of cutting fluids on the machining of hardened AISI 4340 steel. J Mater Process Technol 119(1–3):21–26. doi: 10.1016/S0924-0136(01)00891-3 CrossRefGoogle Scholar
  55. 55.
    Rahim EA, Sasahara H (2011) A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloy. Tribol Int 44(3):309–317. doi: 10.1016/j.triboint.2010.10.032 CrossRefGoogle Scholar
  56. 56.
    Anthony Xavior M, Adithan M (2009) Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J Mater Process Technol 209:900–909. doi: 10.1016/j.jmatprotec.2008.02.068 CrossRefGoogle Scholar
  57. 57.
    Belluco W, DeChiffre L (2004) Performance evaluation of vegetable-based oils in drilling austenitic stainless steel. J Mater Process Technol 148(2):171–176. doi: 10.1016/S0924-0136(03)00679-4 CrossRefGoogle Scholar
  58. 58.
    White JJ, Carroll JN, Haines HE (1997) SETC Paper 972108 and JSAE 9734412 presented at the small engine technology conference-1997, Yokohama, JapanGoogle Scholar
  59. 59.
    Masjuki HH, Maleque MA, Kubo A, Nonaka T (1999) Palm oil and mineral oil based lubricants—their tribological and emission performance. Tribol Int 32:305–314. doi: 10.1016/S0301-679X(99)00052-3 CrossRefGoogle Scholar
  60. 60.
    Mannekote JK, Kailas SV (2009) Performance evaluation of vegetable oils as lubricant in a four stroke engine. World tribology conference, Kyoto, Japan, 12–15 Sept 2009, D-215, 331Google Scholar
  61. 61.
    Mannekote JK, Kailas SV (2011) Experimental investigation of coconut and palm oils as lubricants in four stroke engines. Tribol Online 6(1):76–82. doi: 10.2474/trol.6.76 CrossRefGoogle Scholar
  62. 62.
    Habereder T, Moore D, Lang M (2009) Eco requirements for lubricant additives. In: Rudnick LR (ed) Lubricant additives chemistry and applications, 2nd edn., CRC Press, Taylor and Fransis Group Boca Raton, FL pp 647–666Google Scholar
  63. 63.
    Becker R, Knorr A (1996) An evaluation of antioxidants for vegetable oils at elevated temperatures. Lubr Sci 8(2):95–116. doi: 10.1002/ls.3010080202 CrossRefGoogle Scholar
  64. 64.
    Farng LO (2009) Ashless antiwear and extreme-pressure additives. In: Rudnick LR (ed) Lubricant additives chemistry and applications, 2nd edn, CRC Press, Taylor and Fransis Group Boca Raton, FL, pp 213–249Google Scholar
  65. 65.
    Sulek MW, Wasilewski T (2006) Tribological properties of aqueous solutions of alkyl polyglucosides. Wear 260:193–204. doi: 10.1016/j.wear.2005.02.047 CrossRefGoogle Scholar
  66. 66.
    Platz G, Polike J, Thuning C, Hofmann R, Nickiel D, vonRy-binski W (1995) Phase behavior lyotropic phases and flow properties of alkyl glycosides in aqueous solution. Langmuir 11:4250–4255. doi: 10.1021/la00011a015 CrossRefGoogle Scholar
  67. 67.
    Lei H, Guan W, Luo J (2002) Tribological behavior of fullerene–styrene sulfonic acid copolymer as water-based lubricant additive. Wear 252(3–4):345–350. doi: 10.1016/S0043-1648(01)00888-2 CrossRefGoogle Scholar
  68. 68.
    Huang W, Dong J, Li F, Chen B (2002) Study of the tribological behavior of S-(carboxylpropyl)-N-dialkyl dithiocarbamic acid as additives in water-based fluid. Wear 252(3–4):306–310. doi: 10.1016/S0043-1648(01)00887-0 CrossRefGoogle Scholar
  69. 69.
    Fox NJ, Tyrer B, Stachowiak GW (2004) Boundary lubrication performance of free fatty acids in sunflower oil. Tribol Lett 16(4):275–281. doi: 10.1023/B:TRIL.0000015203.08570.82 CrossRefGoogle Scholar
  70. 70.
    Cao Y, Yu L, Liu W (2000) Study of the tribological behavior of sulfurized fatty acids as additives in rapeseed oil. Wear 244(1–2):126–131. doi: 10.1016/S0043-1648(00)00445-2 CrossRefGoogle Scholar
  71. 71.
    Lovell MR, Kabir MA, Menezes PL, Higgs F (2010) Influence of boric acid additive size on green lubricant performance. Phil Trans R Soc A 368:4851–4868. doi: 10.1098/rsta.2010.0183 CrossRefGoogle Scholar
  72. 72.
    Sawyer WG, Ziegert JC, Schmitz TL, Barton T (2006) In situ lubrication with boric acid: powder delivery of an environmentally benign solid lubricant. Tribol Trans 49(2):284–290. doi: 10.1080/05698190600639939 CrossRefGoogle Scholar
  73. 73.
    Menezes PL, Lovell MR, Kabir MA, Higgs F, Rohatgi PK (2012) Green lubricants: role of additive size. In: Green tribology, Springer, pp 265–287; doi:  10.1007/978-3-642-23681-5
  74. 74.
    Freemantle M (2010) An introduction to ionic liquids. RSC, Cambridge, UKGoogle Scholar
  75. 75.
    Canter N (2005) Evaluating ionic liquids as potential lubricants. Tribol Lubr Technol 61:15–17Google Scholar
  76. 76.
    Reeves CJ, Garvey S, Menezes PL, Dietz M, Jen T-C, Lovell MR (2012) Tribological performance of environmentally friendly ionic liquid lubricants. Proceedings of the ASME/STLE 2012 international joint tribology conference IJTC2012, Denver, Colorado, USA, 8–10 Oct 2012Google Scholar
  77. 77.
    Bermúdez MD, Jimènez AE, Sanes J, Carriûn FJ (2009) Ionic liquids as advanced lubricant fluids. Molecules 14(8):2888–2908. doi: 10.3390/molecules14082888 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jagadeesh K. Mannekote
    • 1
  • Pradeep L. Menezes
    • 2
  • Satish V. Kailas
    • 1
  • Sathwik R. K. Chatra 
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Industrial EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations