On the Outside: Prediction of Human Respiratory and Pulsatory Motion

  • Floris Ernst
Chapter

Abstract

As outlined in section 1.1, there will be an inevitable difference between the current target position and the position of the treatment beam. This difference originates from the latency in acquiring and computing the target position and from moving the robot. The goal clearly is to compensate for this delay and try to send the robot to a predicted position. In practice, several methods for the compensation of this delay are implemented and used clinically. These are a pattern-matching algorithm, called Zero Error Prediction (ZEP), an adaptive filter based on Least Mean Squares (LMS), a fuzzy prediction algorithm and a hybrid combination of these [35, 36].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ALGLIB – a cross-platform numerical analysis and data processing library. Available online. URL http://www.alglib.net
  2. 2.
    Bartz, D., Bohn, S., Hoffmann, J. (eds.): Jahrestagung der Deutschen Gesellschaft f¨ur Computer- und Roboterassistierte Chirurgie, vol. 7. CURAC, Leipzig, Germany (2008)Google Scholar
  3. 3.
    Bruder, R., Ernst, F., Schlaefer, A., Schweikard, A.: Real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. In: 51st Annual Meeting of the AAPM, Medical Physics, vol. 36, p. 2804. American Association of Physicists in Medicine, Anaheim, CA, USA (2009). DOI  10.1118/1.3182643. TH-C-304A-07
  4. 4.
    CMake cross-platform build tools. Available online. URL http://www. cmake.org
  5. 5.
    Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural networkfor nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1), 148–154 (1997). DOI  10.1109/72.554199 CrossRefGoogle Scholar
  6. 6.
    Dieterich, S.: Private communication (Mar., 2008, and Oct., 2010)Google Scholar
  7. 7.
    Douglas, S.C.: A family of normalized LMS algorithms. IEEE Signal Processing Letters 1(3), 49–55 (1994)CrossRefGoogle Scholar
  8. 8.
    Ernst, F., Bruder, R., Pohl, M., Schlaefer, A., Schweikard, A.: Prediction of cardiac motion. In: Proceedings of the 24th International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’10), International Journal of CARS, vol. 5, pp. 273–274. CARS, Geneva, Switzerland (2010)Google Scholar
  9. 9.
    Ernst, F., Bruder, R., Schlaefer, A.: Processing of respiratory signals from tracking systems for motion compensated IGRT. In: 49th Annual Meeting of the AAPM, Medical Physics, vol. 34, p. 2565. American Association of Physicists in Medicine, Minneapolis-St. Paul, MN, USA (2007). DOI  10.1118/1.2761413. TU-EE-A3-4
  10. 10.
    Ernst, F., Schlaefer, A., Dieterich, S., Schweikard, A.: A fast lane approach to LMS prediction of respiratory motion signals. Biomedical Signal Processing and Control 3(4), 291–299 (2008). DOI  10.1016/j.bspc.2008.06.001 CrossRefGoogle Scholar
  11. 11.
    Ernst, F., Schlaefer, A., Schweikard, A.: Prediction of respiratory motion with wavelet-based multiscale autoregression. In: N. Ayache, S. Ourselin, A. Maeder (eds.) MICCAI 2007, Part II, Lecture Notes in Computer Science, vol. 4792, pp. 668–675. MICCAI, Springer, Brisbane, Australia (2007). DOI  10.1007/978-3-540-75759-7 81
  12. 12.
    Ernst, F., Schlaefer, A., Schweikard, A.: Processing of respiratory motion traces for motion-compensated radiotherapy. Medical Physics 37(1), 282–294 (2010). DOI  10.1118/1.3271684 CrossRefGoogle Scholar
  13. 13.
    Ernst, F., Schlaefer, A., Schweikard, A.: Predicting the outcome of respiratory motion prediction. Medical Physics 38(10), accepted for publication (2011)Google Scholar
  14. 14.
    Ernst, F., Schweikard, A.: A family of linear algorithms for the prediction of respiratory motion in image-guided radiotherapy. In: Proceedings of the 22nd International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’08), International Journal of CARS, vol. 3, pp. 31–32. CARS, Barcelona, Spain (2008). DOI  10.1007/s11548-008-0169-x
  15. 15.
    Ernst, F., Schweikard, A.: Predicting respiratory motion signals for imageguided radiotherapy using multi-step linear methods (MULIN). International Journal of Computer Assisted Radiology and Surgery 3(1–2), 85–90 (2008). DOI  10.1007/s11548-008-0211-z CrossRefGoogle Scholar
  16. 16.
    Ernst, F., Schweikard, A.: Prediction of respiratory motion using a modified Recursive Least Squares algorithm. In: Bartz et al. [2], pp. 157–160Google Scholar
  17. 17.
    Ernst, F., Schweikard, A.: Forecasting respiratory motion with accurate online support vector regression (SVRpred). International Journal of ComputerAssisted Radiology and Surgery 4(5), 439–447 (2009). DOI  10.1007/s11548- 009-0355-5CrossRefGoogle Scholar
  18. 18.
    Ernst, F., Schweikard, A.: Predicting respiratory motion signals using accurate online support vector regression (SVRpred). In: Proceedings of the 23rd International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’09), International Journal of CARS, vol. 4, pp. 255–256. CARS, Berlin, Germany (2009). DOI  10.1007/s11548-009-0340-z
  19. 19.
    Ernst, F., Stender, B., Schlaefer, A., Schweikard, A.: Using ECG in motion prediction for radiosurgery of the beating heart. In: G.Z. Yang, A. Darzi (eds.) The Hamlyn Symposium on Medical Robotics, vol. 3, pp. 37–38 (2010)Google Scholar
  20. 20.
    Griffiths, L.J.: A simple adaptive algorithm for real-time processing in antenna arrays. Proceedings of the IEEE 57(10), 1696–1704 (1969)CrossRefGoogle Scholar
  21. 21.
    Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM Journal on Optimization 17(2), 526–557 (2006). DOI  10.1137/050635225 MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice Hall, Englewood Cliffs, NJ (2002)Google Scholar
  23. 23.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering 82D, 35–45 (1960)CrossRefGoogle Scholar
  24. 24.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Transactions of the ASME Journal of Basic Engineering 83D, 95–108 (1961)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kn¨opke, M., Ernst, F.: Flexible Markergeometrien zur Erfassung von Atmungs- und Herzbewegungen an der K¨orperoberfl¨ache. In: Bartz et al. [2], pp. 15–16Google Scholar
  26. 26.
    Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear distance analysis versus isomap. In: European Symposium on Artificial Neural Networks (ESANN), pp. 185–192. Bruges (Belgium) (2002)Google Scholar
  27. 27.
    Ma, J., Theiler, J., Perkins, S.: Accurate on-line support vector regression. Neural Computation 15(11), 2683–2703 (2003). DOI  10.1162/089976603322385117 MATHCrossRefGoogle Scholar
  28. 28.
    McCall, K.C., Jeraj, R.: Dual-component model of respiratory motion based on the periodic autoregressive moving average (periodic ARMA) method. Physics in Medicine and Biology 52(12), 3455–3466 (2007). DOI  10.1088/0031- 9155/52/12/009CrossRefGoogle Scholar
  29. 29.
    Parrella, F.: Online support vector regression. Master’s thesis, University of Genoa (2007)Google Scholar
  30. 30.
    Ramrath, L., Schlaefer, A., Ernst, F., Dieterich, S., Schweikard, A.: Prediction of respiratory motion with a multi-frequency based Extended Kalman Filter. In: Proceedings of the 21st International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’07), International Journal of CARS, vol. 2, pp. 56–58. CARS, Berlin, Germany (2007). DOI  10.1007/s11548-007-0083-7
  31. 31.
    Ren, Q., Nishioka, S., Shirato, H., Berbeco, R.I.: Adaptive prediction of respiratory motion for motion compensation radiotherapy. Physics in Medicine and Biology 52(22), 6651–6661 (2007). DOI  10.1088/0031-9155/52/22/007 CrossRefGoogle Scholar
  32. 32.
    Renaud, O., Starck, J.L., Murtagh, F.: Prediction based on a multiscale decomposition. International Journal of Wavelets, Multiresolution and Information Processing 1(2), 217–232 (2003)MATHCrossRefGoogle Scholar
  33. 33.
    Renaud, O., Starck, J.L., Murtagh, F.:Wavelet-based combined signal filtering and prediction. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 35(6), 1241–1251 (2005)Google Scholar
  34. 34.
    Rzezovski, N., Ernst, F.: Graphical tool for the prediction of respiratory motion signals. In: Bartz et al. [2], pp. 179–180Google Scholar
  35. 35.
    Sayeh, S.,Wang, J., Main,W.T., Kilby,W., Maurer Jr., C.R.: Robotic Radiosurgery. Treating Tumors that Move with Respiration, 1st edn., chap. Respiratory motion tracking for robotic radiosurgery, pp. 15–30. Springer, Berlin (2007). DOI  10.1007/978-3-540-69886-9
  36. 36.
    Sheng, Y., Li, S., Sayeh, S., Wang, J., Wang, H.: Fuzzy and hybrid prediction of position signal in SynchronyˆA _R respiratory tracking system. In: R.J.P. de Figueiredo (ed.) SIP 2007, pp. 459–464. IASTED, Acta Press, Honolulu, USA (2007)Google Scholar
  37. 37.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  38. 38.
    Vedam, S.S., Keall, P.J., Docef, A., Todor, D.A., Kini, V.R., Mohan, R.: Predicting respiratory motion for four-dimensional radiotherapy. Medical Physics 31(8), 2274–2283 (2004). DOI  10.1118/1.1771931 CrossRefGoogle Scholar
  39. 39.
    Verleysen, M., Francois, D.: The curse of dimensionality in data mining and time series prediction. In: Proceedings of the 8th International Workshop on Artificial Neural Networks (IWANN 2005), Lecture Notes in Computer Science, vol. 3512, pp. 758–770. Springer, Barcelona, Spain (2005). DOI  10.1007/11494669 93
  40. 40.
    Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON Convention Record, vol. 4, pp. 96–104 (1960)Google Scholar
  41. 41.
    wxWidgets – a cross-platform GUI library. Available online. URL http: //www.wxwidgets.org
  42. 42.
    Yuen, S.G., Kettler, D.T., Novotny, P.M., Plowes, R.D., Howe, R.D.: Robotic motion compensation for beating heart intracardiac surgery. International Journal of Robotics Research 28(10), 1355–1372 (2009).DOI  10.1177/0278364909104065 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Floris Ernst
    • 1
  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany

Personalised recommendations