Motion Compensation in Robotic Radiosurgery

  • Floris Ernst


This chapter describes the principles of motion compensation in radiotherapy with a focus on robotic radiosurgery, starting with a brief description of the medical implications. Throughout, special emphasis will be placed on the CyberKnife_R system and we will outline the problems originating from the aim of real-time motion compensation. The main current application of robotic radiotherapy is the treatment of malignant tumours while a second, very promising field is the therapy of cardiac arrhythmia, especially of atrial fibrillation. An outline of this project called CyberHeart, and the challenges emanating from it, will be given in section 2.5.a


Planning Target Volume Intensity Modulate Radiation Therapy Gross Tumour Volume Stereotactic Radiosurgery Motion Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACC/AHA/ESC: ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Circulation 114(7), e257–354 (2006). DOI  10.1161/CIRCULATIONAHA.106.177292 [2] Adler Jr., J.R.: Interactive image-guided neurosurgery, chap. Image-based frameless stereotactic radiosurgery, pp. 81–89. American Association of Neurological Surgeons (1993)Google Scholar
  2. 2.
    Adler Jr., J.R.: Clinical neurosurgery, The Congress of Neurological Surgeons, vol. 52, chap. Accuray, incorporated: a neurosurgical business case study, pp. 87–96. Lippincott, Williams and Wilkins (2005)Google Scholar
  3. 3.
    Adler Jr., J.R., Chang, S.D., Murphy, M.J., Doty, J., Geis, P., Hancock, S.L.: The CyberKnife: A frameless robotic system for radiosurgery. Stereotactic and Functional Neurosurgery 69, 124–128 (1997). DOI  10.1159/000099863 CrossRefGoogle Scholar
  4. 4.
    Adler Jr., J.R., Hancock, S.L.: The Neurotron 1000: A system for frameless stereotactic radiosurgery. Perspectives in Neurological Surgery 5(1), 127–133 (1994)Google Scholar
  5. 5.
    Adler Jr., J.R., Schweikard, A.: Future health: computers and medicine in the twenty-first century, chap. Bloodless robotic surgery, pp. 123–129. St. Martin’s Press, Inc., New York, NY, USA (1995)Google Scholar
  6. 6.
    Adler Jr., J.R., Schweikard, A., Murphy, M.J., Hancock, S.L.: Image-guided neurosurgery: clinical applications of surgical navigation, chap. Image-guided stereotactic radiosurgery: The CyberKnife, pp. 193–204. Quality Medical Publishing, St. Louis, MO (1998)Google Scholar
  7. 7.
    Bruder, R., Cai, T., Ernst, F., Schweikard, A.: 3D ultrasound-guided motion compensation for intravascular radiation therapy. In: Proceedings of the 23rd International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’09), International Journal of CARS, vol. 4, pp. 25–26. CARS, Berlin, Germany (2009). DOI  10.1007/s11548-009-0309-y
  8. 8.
    Bruder, R., Ernst, F., Schlaefer, A., Schweikard, A.: Real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. In: 51st Annual Meeting of the AAPM, Medical Physics, vol. 36, p. 2804. American Association of Physicists in Medicine, Anaheim, CA, USA (2009). DOI  10.1118/1.3182643. TH-C-304A-07
  9. 9.
    Chang, S.D., Murphy, M.J., Martin, D.P., Hancock, S.L., Doty, J., Adler Jr., J.R.: Radiosurgery, vol. 3, chap. Image-Guided Robotic Radiosurgery: Clinical and Radiographic Results with the CyberKnife, pp. 23–33. Karger Medical and Scientific Publishers, New York (1999)Google Scholar
  10. 10.
    D’Souza, W.D., McAvoy, T.J.: An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation. Medical Physics 33(12), 4701–4709 (2006). DOI  10.1118/1.2372218 CrossRefGoogle Scholar
  11. 11.
    D’Souza, W.D., Naqvi, S.A., Yu, C.X.: Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Physics in Medicine and Biology 50(17), 4021–4033 (2005). DOI  10.1088/0031-9155/50/17/007 CrossRefGoogle Scholar
  12. 12.
    Galvin, J.M., Ezzell, G., Eisbrauch, A., Yu, C.X., Butler, B., Xiao, Y., Rosen, I., Rosenman, J., Sharpe, M.B., Xing, L., Xia, P., Lomax, T., Low, D.A., Palta, J.: Implementing IMRT in clinical practice: a joint document of the american society for therapeutic radiology and oncology and the american association of physicists in medicine. International Journal of Radiation Oncology, Biology, Physics 58(5), 1616–1634 (2004). DOI  10.1016/j.ijrobp.2003.12.008 CrossRefGoogle Scholar
  13. 13.
    Galvin, J.M., Smith, A.R., Lally, B.: Characterization of a multileaf collimator system. International Journal of Radiation Oncology, Biology, Physics 25(2), 181–192 (1993)CrossRefGoogle Scholar
  14. 14.
    Guthrie, B.L., Adler Jr., J.R.: Frameless stereotaxy: Computer interactive neurosurgery. Perspectives in Neurological Surgery 2(1), 1–22 (1991)Google Scholar
  15. 15.
    Guthrie, B.L., Adler Jr., J.R.: Clinical Neurosurgery, The Congress of Neurological Surgeons, vol. 38, chap. Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy, pp. 112–131. Williams and Wilkins (1992)Google Scholar
  16. 16.
    Hanley, J., Debois, M.M., Mah, D., Mageras, G.S., Raben, A., Rosenzweig, K., Mychalczak, B., Schwartz, L.H., Gloeggler, P.J., Lutz, W., Ling, C.C., Leibel, S.A., Fuks, Z., Kutcher, G.J.: Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. International Journal of Radiation Oncology, Biology, Physics 45(3), 603–611 (1999). DOI  10.1016/s0360-3016(99)00154-6 CrossRefGoogle Scholar
  17. 17.
    Hirai, E., Tsukuda, K., Kamino, Y., Miura, S., Takayama, K., Aoi, T.: Stateof- the-art medical treatment machine MHI-TM2000. Mitsubishi Heavy Industries Technical Review 46(1), 29–32 (2009)Google Scholar
  18. 18.
    Hoogeman, M., Pr´evost, J.B., Nuyttens, J., P¨oll, J., Levendag, P., Heijmen, B.: Clinical accuracy of the respiratory tumor tracking system of the CyberKnife: Assessment by analysis of log files. International Journal of Radiation Oncology, Biology, Physics 74(1), 297–303 (2009). DOI  10.1016/j.ijrobp.2008.12.041 Google Scholar
  19. 19.
    IMRT Collaborative Working Group: Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology, Biology, Physics 51(4), 880–914 (2001)CrossRefGoogle Scholar
  20. 20.
    Jaffray, D.A., Drake, D.G., Moreau, M., Martinez, A.A., Wong, J.W.: A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. International Journal of Radiation Oncology, Biology, Physics 45(3), 773–789 (1999). DOI  10.1016/s0360-3016(99)00118-2 CrossRefGoogle Scholar
  21. 21.
    Kamino, Y., Takayama, K., Kokubo, M., Narita, Y., Hirai, E., Kawada, N., Mizowaki, T., Nagata, Y., Nishidai, T., Hiraoka, M.: Development of a fourdimensional image-guided radiotherapy system with a gimbaled X-ray head. International Journal of Radiation Oncology, Biology, Physics 66(1), 271–278 (2006). DOI  10.1016/j.ijrobp.2006.04.044 CrossRefGoogle Scholar
  22. 22.
    Keall, P.J., Joshi, S., Vedam, S.S., Siebers, J.V., Kini, V.R., Mohan, R.: Fourdimensional radiotherapy planning for DMLC-based respiratory motion tracking. Medical Physics 32(4), 942–951 (2005). DOI  10.1118/1.1879152 CrossRefGoogle Scholar
  23. 23.
    Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptive X-ray therapy: a feasibility study. Physics in Medicine and Biology 46(1), 1–10 (2001)CrossRefGoogle Scholar
  24. 24.
    Lu, W.: Real-time motion-adaptive delivery (MAD) using binary MLC: II.Rotational beam (tomotherapy) delivery. Physics in Medicine and Biology 53(22), 6513–6531 (2008)Google Scholar
  25. 25.
    Lu, W., Chen, M., Ruchala, K.J., Chen, Q., Langen, K.M., Kupelian, P.A., Olivera, G.H.: Real-time motion-adaptive-optimization (MAO) in Tomo- Therapy. Physics in Medicine and Biology 54(14), 4373–4398 (2009). DOI  10.1088/0031-9155/54/14/003 CrossRefGoogle Scholar
  26. 26.
    Mackie, T.R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J.O., Yang, J., Paliwal, B., Kinsella, T.: Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Medical Physics 20(6), 1709–1719 (1993). DOI  10.1118/1.596958 CrossRefGoogle Scholar
  27. 27.
    Mageras, G.S., Mohan, R., Burman, C., Barest, G.D., Kutcher, G.J.: Compensators for three-dimensional treatment planning. Medical Physics 18(2), 133–140 (1991). DOI  10.1118/1.596699 CrossRefGoogle Scholar
  28. 28.
    Maguire, P., Sharma, A., Fogarty, T., Sumanaweera, T., Jack, A.: Non-invasive radiosurgical ablation of the myocardium: Pre clinical electrophysiology and histology. In: Boston Atrial Fibrillation Symposium (2008)Google Scholar
  29. 29.
    McClelland, J.R., Webb, S., McQuaid, D., Binnie, D.M., Hawkes, D.J.: Tracking ’differential organ motion’ with a ’breathing’ multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy. Physics in Medicine and Biology 52(16), 4805–4826 (2007). DOI  10.1088/0031-9155/52/16/007 CrossRefGoogle Scholar
  30. 30.
    McQuaid, D., Webb, S.: IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam’s eye view. Physics in Medicine and Biology 51(19), 4819–4839 (2006). DOI  10.1088/0031-9155/51/19/007 CrossRefGoogle Scholar
  31. 31.
    Mehta, M.P., Noyes, W.R., Mackie, T.R.: Linear accelerator configurationsfor radiosurgery. Seminars in Radiation Oncology 5(3), 203–212 (1995). DOI  10.1016/s1053-4296(05)80018-9. Stereotactic RadiosurgeryCrossRefGoogle Scholar
  32. 32.
    Mewis, C., Neuberger, H.R., B¨ohm, M.: Vorhoffflimmern. Deutsche Medizinische Wochenschrift 131(50), 2843–2854 (2006). DOI  10.1055/s-2006- 957212
  33. 33.
    Mitsubishi Heavy Industries, Ltd.: MHI’s first radiotherapy machine for overseas to begin treatment at Brussels University Hospital (UZ Brussel). Press release (2009). URL 0912031325.html. MHI News No. 1325
  34. 34.
    Muacevic, A., Staehler, M., Drexler, C., Wowra, B., Reiser, M., Tonn, J.C.: Technical description, phantom accuracy, and clinical feasibility for fiducialfree frameless real-time image-guided spinal radiosurgery. Journal of Neurosurgery 5(4), 303–312 (2006). DOI  10.3171/spi.2006.5.4.303. PMID: 17048766CrossRefGoogle Scholar
  35. 35.
    Neicu, T., Shirato, H., Seppenwoolde, Y., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Physics in Medicine and Biology 48(5), 587–598 (2003). DOI  10.1088/0031-9155/48/5/303 CrossRefGoogle Scholar
  36. 36.
    Pankratov, M., Benetti, F., Vivian, J.: Method for non-invasive heart treatment (2005). U.S. patent 6,889,695Google Scholar
  37. 37.
    Papie˙z, L.: DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target. Medical Physics 31(10), 2742–2754 (2004). DOI  10.1118/1.1779358 Google Scholar
  38. 38.
    Rosenzweig, K.E., Hanley, J., Mah, D., Mageras, G.S., Hunt, M., Toner, S., Burman, C., Ling, C.C., Mychalczak, B., Fuks, Z., Leibel, S.A.: The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, Physics 48(1), 81–87 (2000). DOI  10.1016/s0360-3016(00)00583-6 CrossRefGoogle Scholar
  39. 39.
    Rosenzweig, K.E., Hanley, J., Mychalczak, B., Fuks, Z., Mageras, G.S., Yorke, E., Ling, C.C., Burman, C., Ginsberg, R.J., Kris, M.G., Leibel, S.A.: Phase i dose escalation study using the deep inspiration breath hold technique to safely increase dose to 81 gy in the treatment of inoperable non-small cell lung cancer. International Journal of Radiation Oncology, Biology, Physics 48(3, supp. 1), 233–233 (2000). DOI  10.1016/S0360-3016(00)80260-6
  40. 40.
    Schweikard, A., Adler Jr., J.R., Latombe, J.C.: Motion planning in stereotaxic radiosurgery. IEEE Transactions on Robotics and Automation 9(6), 764–774 (1993). DOI  10.1109/70.265920 CrossRefGoogle Scholar
  41. 41.
    Schweikard, A., Bodduluri, M., Adler Jr., J.R.: Planning for camera-guided robotic radiosurgery. IEEE Transactions on Robotics and Automation 14(6), 951–962 (1998). DOI  10.1109/70.736778 CrossRefGoogle Scholar
  42. 42.
    Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler Jr., J.R.: Robotic Motion Compensation for Respiratory Movement during Radiosurgery. Journal of Computer-Aided Surgery 5(4), 263–277 (2000). DOI  10.3109/10929080009148894 CrossRefGoogle Scholar
  43. 43.
    Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery. Medical Physics 31(10), 2738–2741 (2004). DOI  10.1118/1.1774132 CrossRefGoogle Scholar
  44. 44.
    Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery without fiducials. International Journal of Medical Robotics and Computer Assisted Surgery 1(2), 19–27 (2005). DOI  10.1002/rcs.38 CrossRefGoogle Scholar
  45. 45.
    Schweikard, A., Shiomi, H., Uchida, M., Adler Jr., J.R.: Extracranial Stereotactic Radiotherapy and Radiosurgery, chap. Whole-Body Radiosurgery with the Cyberknife, pp. 71–87. Taylor and Francis, New York (2005)Google Scholar
  46. 46.
    Schweikard, A., Tombropoulos, R., Kavraki, L., Adler Jr., J.R., Latombe, J.C.: Treatment planning for a radiosurgical system with general kinematics. In: IEEE International Conference on Robotics and Automation (ICRA 1994), pp. 1720–1727 (1994). DOI  10.1109/robot.1994.351344
  47. 47.
    Seppenwoolde, Y., Berbeco, R.I., Nishioka, S., Shirato, H., Heijmen, B.: Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study. Medical Physics 34(7), 2774–2784 (2007). DOI  10.1118/1.2739811 CrossRefGoogle Scholar
  48. 48.
    Sharma, A., Maguire, P., Sumanaweera, T., Wong, D., Marshall, R., Fajardo, L., Fogarty, T.: Non-invasive ablation of the left superior pulmonary vein-left atrial junction using stereotactic focussed radiation. Circulation 116, II 489 (2007)Google Scholar
  49. 49.
    Sharma, A., Maguire, P., Wong, D., Sumanaweera, T., Steele, J., Peterson, P., Fajardo, L., Takeda, P., Fogarty, T.: New non-invasive therapy for cardiac arrhythmias using stereotactic radiosurgery: Initial feasibility testing. In: 2007 Heart Rhythm Symposium, Heart Rhythm, vol. 4, p. S68 (2007)Google Scholar
  50. 50.
    Shirato, H., Oita, M., Fujita, K., Watanabe, Y., Miyasaka, K.: Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensitymodulated radiotherapy from viewpoint of excessive dose from fluoroscopy.International Journal of Radiation Oncology, Biology, Physics 60(1), 335 –341 (2004). DOI  10.1016/j.ijrobp.2004.04.028 Google Scholar
  51. 51.
    Shirato, H., Shimizu, S., Kitamura, K., Nishioka, T., Kagei, K., Hashimoto, S., Aoyama, H., Kunieda, T., Shinohara, N., Dosaka-Akita, H., Miyasaka,K.: Four-dimensional treatment planning and fluoroscopic real-time tumortracking radiotherapy for moving tumor. International Journal of RadiationOncology, Biology, Physics 48(2), 435–442 (2000). DOI  10.1016/s0360- 3016(00)00625-8CrossRefGoogle Scholar
  52. 52.
    Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K.,Miyasaka, K.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. International Journal of Radiation Oncology, Biology, Physics 48(4), 1187 – 1195 (2000). DOI  10.1016/s0360-3016(00)00748-3 CrossRefGoogle Scholar
  53. 53.
    Shirato, H., Shimizu, S., Shimizu, T., Nishioka, T., Miyasaka, K.: Real-time tumour-tracking radiotherapy. The Lancet 353(9161), 1331 – 1332 (1999). DOI  10.1016/s0140-6736(99)00700-x CrossRefGoogle Scholar
  54. 54.
    Simpson, R.G., Chen, C.T., Grubbs, E.A., Swindell, W.: A 4-MV CT scanner for radiation therapy: The prototype system. Medical Physics 9(4), 574–579 (1982). DOI  10.1118/1.595102 CrossRefGoogle Scholar
  55. 55.
    Smith, R.: World’s first heart surgery using radiation. (02.11.2009). URL http://www. Worlds-first-heart-surgery-using-radiation.html
  56. 56.
    Soltys, S.G., Kalani, M.Y.S., Cheshier, S.H., Szabo, K.A., Lo, A., Chang, S.D.: Stereotactic radiosurgery for a cardiac sarcoma: A case report. Technology in Cancer Research and Treatment 7(5), 363–367 (2008)Google Scholar
  57. 57.
    Sterzing, F., Schubert, K., Sroka-Perez, G., Kalz, J., Debus, J., Herfarth, K.: Helical tomotherapy. Strahlentherapie und Onkologie 184(1), 8–14 (2008). DOI  10.1007/s00066-008-1778-6 CrossRefGoogle Scholar
  58. 58.
    Takahashi, S.: Conformation radiotherapy: rotation techniques as applied to radiography and radiotherapy of cancer. Acta radiologica: diagnosis supp. 242, 1–142 (1965)Google Scholar
  59. 59.
    Takayama, K., Mizowaki, T., Kokubo, M., Kawada, N., Nakayama, H., Narita, Y., Nagano, K., Kamino, Y., Hiraoka, M.: Initial validations for pursuing irradiation using a gimbals tracking system. Radiotherapy and Oncology 93(1), 45–49 (2009). DOI  10.1016/j.radonc.2009.07.011 CrossRefGoogle Scholar
  60. 60.
    Universitair Ziekenhuis Brussel: UZ Brussel inaugurates Vero high precision radiation therapy system. Press release (2009). URL http://www. High+Precision+Radiation+Therapy+System.html
  61. 61.
    Urschel Jr., H.C., Kresl, J.J., Luketich, J.D., Papie˙z, L., Timmerman, R.D. (eds.): Robotic Radiosurgery. Treating Tumors that Move with Respiration, 1st edn. Springer, Berlin (2007). DOI  10.1007/978-3-540-69886-9
  62. 62.
    VHL Family Alliance: Robot does brain surgery. VHL Family Forum 2(3), 1– 2 (1994). URL php
  63. 63.
    Wiersma, R.D., Mao, W., Xing, L.: Combined kV and MV imaging for realtime tracking of implanted fiducial markers. Medical Physics 35(4), 1191– 1198 (2008). DOI  10.1118/1.2842072 CrossRefGoogle Scholar
  64. 64.
    Wilbert, J., Meyer, J., Baier, K., Guckenberger, M., Herrmann, C., Hess, R., Janka, C., Ma, L., Mersebach, T., Richter, A., Roth, M., Schilling, K., Flentje, M.: Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Medical Physics 35(9), 3911–3921 (2008). DOI  10.1118/1.2964090 CrossRefGoogle Scholar
  65. 65.
    Wong, J.W., Sharpe, M.B., Jaffray, D.A., Kini, V.R., Robertson, J.M., Stromberg, J.S., Martinez, A.A.: The use of active breathing control (ABC) to reduce margin for breathing motion. International Journal of Radiation OncologyBiology, Physics 44(4), 911–919 (1999). DOI  10.1016/s0360-3016(99)00056- 5CrossRefGoogle Scholar
  66. 66.
    Xu, J., Papanikolaou, N., Shi, C., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions. Physics in Medicine and Biology 54(16), 4993–5007 (2009). DOI  10.1088/0031-9155/54/16/010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Floris Ernst
    • 1
  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany

Personalised recommendations