Skip to main content

Visual Sensor Nodes

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 114))

Abstract

Recent developments in image and video technologies enabled easy access to a new type of sensor-based networks, Visual Sensor Networks (VSN). VSNs are gaining a lot of attention lately. They are used in several applications including surveillance and telepresence. They consist of several low-cost, low-power visual nodes with sensing, data processing, and communication capabilities. These tiny nodes are able to collect large volumes of images, process them, and send extracted data to each other and to the base station for further analysis. Unfortunately, the huge amount of data captured and processed is faced with the limited resources of such platforms. There are several challenges involved with the design and implementation of VSNs. This chapter presents an overview of visual nodes, architectures, and challenges. It also reviews available VSN platforms and compares their processing capabilities, highlighting the need for new lightweight but efficient image processing algorithms and architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Dargie and C. Poellabauer, Fundamentals of wireless sensor networks: theory and practice, John Wiley and Sons, 2010.

    Google Scholar 

  2. S. Soro and W. Heinzelman, “A survey of visual sensor networks,” Advances in Multimedia, vol. 2009, 2009.

    Google Scholar 

  3. Y. Charfi, B. Canada, N. Wakamiya and M. Murata, “Challenging issues in visual sensor networks,” IEEE Wireless Communications, pp. 44-49, 2009.

    Google Scholar 

  4. D. M. Sheen, D. L. McMakin and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 9, pp. 1581-1592, 2001.

    Article  Google Scholar 

  5. J. Wang, C. Qimei, Z. De and B. Houjie, “Embedded wireless video surveillance system for vehicle,” in International Conference on Telecommunications, Chengdu, China, 2006.

    Google Scholar 

  6. G. Barrenetxea, F. Ingelrest, G. Schaefer and M. Vetterli, “Wireless sensor networks for environmental monitoring: the SensorScope experience,” in IEEE International Zurich Seminar on Communications, Zurich, 2008.

    Google Scholar 

  7. T. H. Chen, P. H. Wu and Y. C. Chiou, “An early fire-detection method based on image processing,” in IEEE International Conference on Image Processing, Singapore, 2004.

    Google Scholar 

  8. L. Cutrona, W. Vivian, E. Leith and G. Hall, “A high-resolution radar combat-surveillance system,” IRE Transaction on Military Electronics, Vols. MIL-5, no. 2, pp. 127-131, 2009.

    Article  Google Scholar 

  9. M. Skolnik, G. Linde and K. Meads, “Senrad: an advanced wideband air-surveillance radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1163-1175, 2001.

    Article  Google Scholar 

  10. S. Fleck and W. Strasser, “Smart camera based monitoring system and its application to assisted living,” Proceedings of the IEEE, vol. 96, no. 10, pp. 1698-1714, 2008.

    Article  Google Scholar 

  11. O. Schreer, P. Kauff and T. Sikora, 3D Videocommunication, Chichester, UK: John Wiley and Sons, 2005.

    Book  Google Scholar 

  12. W. C. Feng, E. Kaiser, M. Shea and B. L., “Panoptes: scalable low-power video sensor networking technologies,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 1, no. 2, pp. 151-167, 2005.

    Google Scholar 

  13. P. Chen, P. Ahammed, C. Boyer, S. Huang, L. Lin, E. Lobaton, M. Meingast, S. Oh, S. Wang, P. Yan, A. Y. Yang, C. Yeo, L. C. Chang, D. Tygar and S. S. Sastry, “CITRIC: a low-bandwidth wireless camera network platform,” in Proc. International Conference on Distributed Smart Cameras, 2008.

    Google Scholar 

  14. S. Hengstler, D. Prashanth, S. Fong and H. Aghajan, “MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance,” in 6th International Symposium on Information Processing in Sensor Networks, Cambridge, 2007.

    Google Scholar 

  15. “Security & surveillance: envisioning a safer world,” [Online]. Available: http://www.ovt.com/applications/application.php?id=10.

  16. J. Boice, X. Lu, C. Margi, G. Stanek, G. Zhang, R. Manduchi and K. Obraczka, “Meerkats: a power-aware, self-managing wireless camera network for wide area monitoring,” in Proceedings Workshop on Distributed Smart Cameras, 2006.

    Google Scholar 

  17. M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin and M. Srivastava, “Cyclops: in situ image sensing and interpretation in wireless sensor networks,” in International Conference on Embedded Networked Sensor Systems, New York, 2005.

    Google Scholar 

  18. A. Kerhet, M. Magno, F. Leonardi, A. Boni and L. Benini, “A low-power wireless video sensor node for distributed object detection,” Journal on Real-Time Image Processing, vol. 2, pp. 331-342, 2007.

    Article  Google Scholar 

  19. A. Rowe, D. Goal and R. Rajkumar, “FireFly Mosaic: a vision-enabled wireless sensor networking system,” in IEEE International Real-Time Systems Symposium, 2007.

    Google Scholar 

  20. M. Zhang and W. Cai, “Vision mesh a novel video sensor networks platform for water conservation engineering,” in IEEE International Conference on Computer Science and Information Technology, 2010.

    Google Scholar 

  21. “CC1000: single chip very low power RF transceiver,” [Online]. Available: http://www.ti.com/lit/ds/symlink/cc1000.pdf.

  22. “CC2420: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver,” [Online]. Available: http://inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf.

  23. “A look at the basics of bluetooth wireless technology,” [Online]. Available: http://www.bluetooth.com/Pages/basics.aspx.

  24. B. P. Crow, I. Widjaja, J. G. Kim and P. T. Sakai, “IEEE 802.11 wireless local area networks,” IEEE Communications Magazine, vol. 35, no. 9, pp. 116-126, 2002.

    Article  Google Scholar 

  25. “Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) - survey and challenges,” in International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, 2009.

    Google Scholar 

  26. D. Niyato, E. Hossain, M. M. Rashid and V. K. Bhargava, “Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management,” IEEE Wireless Communications Magazine, vol. 14, no. 4, pp. 90-96, 2007.

    Article  Google Scholar 

  27. B. Tavli, K. Bicakci, R. Zilan and J. M. Barcelo-Ordinas, “A survey of visual sensor network platforms,” Multimedia Tools and Applications, vol. 60, no. 3, pp. 689-726, 2011.

    Article  Google Scholar 

  28. P. Kulkarni, D. Ganesan, P. Shenoy and Q. Lu, “SensEye: a multi tier camera sensor network,” in ACM International Conference on Multimedia, 2005.

    Google Scholar 

  29. A. M. McIvor, “Background subtraction techniques,” in Image and Vision Computing New Zealand, Hamilton, 2000.

    Google Scholar 

  30. L. Wang, W. Hu and T. Tan, “Recent developments in human motion analysis,” Pattern recognition, vol. 36, no. 3, pp. 585-601, March 2003.

    Article  Google Scholar 

  31. A. Redondi, M. Cesana and M. Tagliasacchi, “Low bitrate coding schemes for local image descriptors,” in IEEE International Workshop on Multimedia Signal Processing, 2011.

    Google Scholar 

  32. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

    Article  MathSciNet  Google Scholar 

  33. M. Fornasier and H. Rauhu, “Compressive sensing,” in Handbook of mathematical methods in imaging, Springer, 2011, pp. 187-228.

    Google Scholar 

  34. J. W. D. Slepian, “Noiseless coding of correlated information sources,” IEEE Transactions on Information Theory, vol. 19, pp. 471-480, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on Information Theory, vol. 22, no. 1, pp. 1-10, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Di, A. Men, B. Yang, F. Ye and X. Zhang, “An improved distributed video coding scheme for wireless video sensor network,” in IEEE Vehicular Vehicular, 2011.

    Google Scholar 

  37. C. Li, J. Zou, H. Xiong and C. W. Chen, “Joint coding/routing optimization for distributed video sources in wireless visual sensor networks,” IEEE Transactions on Circuits, Systems and Video Technology, vol. 21, no. 2, pp. 141-155, 2011.

    Article  MATH  Google Scholar 

  38. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless and C. Gill, “Integrated coverage and connectivity configuration in wireless sensor networks,” in International Conference on Embedded Networked Sensor Systems, 2003.

    Google Scholar 

  39. C.-F. Huang, Y.-C. Tseng and L.-C. Lo, “The coverage problem in three-dimensional wireless sensor networks,” Journal of Interconnection Networks, vol. 8, no. 3, pp. 209-227, 2007.

    Article  Google Scholar 

  40. S. Soro and W. B. Heinzelman, “On the coverage problem in video-based wireless sensor networks,” in IEEE Conference on Broadband Networks, 2005.

    Google Scholar 

  41. A. Yoshida, K. Aoki and S. Araki, “Cooperative control based on reaction-diffusion equation for surveillance system,” in Knowledge-Based Intelligent Information and Engineering Systems, 2005.

    Google Scholar 

  42. Y. Charfi, N. Wakamiya and M. Murata, “Adaptive and reliable multipath transmission in wireless sensor networks using forward error correction and feedback,” in IEEE Conference on Wireless Communications and Networking, 2007.

    Google Scholar 

  43. K.-Y. Chow, K.-S. Lui and E. Y. Lam, “Efficient on-demand image transmission in visual sensor networks,” EURASIP Journal on Applied Signal Processing, vol. 2007, pp. 1-11, 2007.

    Google Scholar 

  44. C. D.-F. V. Lecuire and N. Krommenacker, “Energy-efficient transmission of wavelet-based images in wireless sensor networks,” EURASIP Journal on Image Video Processing, 2007.

    Google Scholar 

  45. S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their application, John Wiley and Sons, 1999.

    Google Scholar 

  46. J. J. Ong, L. Ang and K. Seng, “FPGA implementation reed solomon encoder for visual sensor networks,” in International Conference on Computer Communication and Management, 2011.

    Google Scholar 

  47. H. Wu and A. A. Abouzeid, “Error resilient image transport in wireless sensor networks,” Computer Networks, vol. 50, no. 15, pp. 2873-2887, 2006.

    Article  MATH  Google Scholar 

  48. M. Maimour, C. Pham and J. Amelot, “Load repartition for congestion control in multimedia wireless sensor networks with multipath routing,” in International Symposium on Wireless Pervasive Computing, 2008.

    Google Scholar 

  49. S. Misra, M. Reisslein and G. Xue, “A survey of multimedia streaming in wireless sensor networks,” IEEE Communications Surveys and Tutorials, vol. 10, no. 4, pp. 18-39, 2008.

    Article  Google Scholar 

  50. W. Ye, J. Heidemann and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” in International Annual Joint Conference of the IEEE Computer and Communication Societies, 2002.

    Google Scholar 

  51. Y. Andreopoulos, N. Mastronarde and M. v. d. Schaar, “Cross-layer optimized video streaming over wireless multi-hop mesh networks,” IEEE Journal on Selected Areas in communications, vol. 24, no. 11, pp. 2104-2115, 2006.

    Article  Google Scholar 

  52. Q. Li and M. V. D. Schaar, “Providing adaptive qos to layered video over wireless local area networks through real-time retry limit adaptation,” IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 278-290, 2004.

    Article  Google Scholar 

  53. M. v. d. Schaar and D. Turaga, “Content-based cross-layer packetization and retransmission strategies for wireless multimedia transmission,” IEEE Transactions on Multimedia, vol. 9, no. 1, pp. 185-197, 2007.

    Article  Google Scholar 

  54. D. Lymberopoulos and A. Savvides, “XYZ: a motion-enabled, power aware sensor node platform for distributed sensor network applications,” in International Conference on Information Processing in Sensor Networks, 2005.

    Google Scholar 

  55. R. Kleihorst, A. Abbo, B. Schueler and A. Danillin, “Camera mote with a high-performance parallel processor for realtime frame-based video processing,” in International Conference on Distributed Smart Cameras, 2008.

    Google Scholar 

  56. “Crossbow technology,” [Online]. Available: http://www.xbow.com.

  57. “CMUcam: open source programmable embedded color vision sensors,” [Online]. Available: http://www.cmucam.org/.

  58. “Tmote sky,” [Online]. Available: http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Al Najjar, M., Ghantous, M., Bayoumi, M. (2014). Visual Sensor Nodes. In: Video Surveillance for Sensor Platforms. Lecture Notes in Electrical Engineering, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1857-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1857-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1856-6

  • Online ISBN: 978-1-4614-1857-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics