Pulse Coupled Oscillator Networks

  • Alyssa Apsel
  • Xiao Wang
  • Rajeev Dokania
Part of the Analog Circuits and Signal Processing book series (ACSP, volume 124)


In a seminal 1990 work (SIAM J Appl Math 50:1645–1662, 1990), Mirollo and Strogatz posed a general analytical framework for pulse coupled oscillator systems as a behavioral model for Southeast Asian Fireflies that has subsequently been extensively studied in the fields of mathematics, physics, and non-linear dynamics. The system assumes a network ofN oscillators which interact through impulsive coupling, representing the “firing” of a firefly. Each oscillator with indexj has an internal state that can be represented by a phase variableϕ j (t), which increases in time at a constant rate\({{\phi }_{j}}\text{ }\!\!~\!\!\text{ }=\text{ }\!\!~\!\!\text{ }1+{{\delta }_{j}}\), where the parameter\(\left| {{\delta }_{j}} \right|\) models variability in the natural oscillation period of oscillatorj in the absence of coupling.


  1. 1.
    R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math.50(Dec.), 1645–1662 (1990)Google Scholar
  2. 2.
    Y.W. Hong, A. Scaglione, A scalable synchronization protocol for large scale sensor networks and its applications. IEEE J. Sel. Areas Commun.23(5) 1085–1099 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Timme, Collective dynamics in networks of pulse-coupled oscillators, Ph. D. dissertation, Max Planck Institute, Netherlands, 2002Google Scholar
  4. 4.
    L. Abbott, C. Van-Vreeswijk, Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E.48(Aug.), 1483–1490 (1993)Google Scholar
  5. 5.
    U. Ernst, K. Pawelzik, T. Geisel, Delay-Induced multistable synchronization of biological oscillators, Phys. Rev. E.57(Feb.), 2150–2162 (1998)Google Scholar
  6. 6.
    M. Zeitler, A. Daffertshofer, C.C.A.M. Gielen, Asymmetry in pulse-coupled oscillators with delay. Phys. Rev. E.79(Jun.), 065203-1-4(R) (2009)Google Scholar
  7. 7.
    W. Gerstner, Rapid phase locking in systems of pulse-coupled oscillators with delays. Phys. Rev. E.76(Mar.), 1755–1758 (1996)Google Scholar
  8. 8.
    J. Ryckaert et al, A CMOS ultra-wideband receiver for low data-rate communication. IEEE J. Solid-State Circuits42(11), 2515–2527 (2007)CrossRefGoogle Scholar
  9. 9.
    F.S. Lee, A.P. Chandrakasan, A 2.5nJ/b 0.65V 3-to-5 GHz subbanded UWB receiver in 90 nm CMOS. IEEE Int. Solid-State Circuits Conf. Feb. 116–117 (2007)Google Scholar
  10. 10.
    A. Demir, A. Mehrotra, J. Roychowdhury, Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I, Fund. Theory Appl.47(May), 655–674 (2000)Google Scholar
  11. 11.
    S. B. T. Wang, Design of ultra-wideband RF front-end, Ph. D. dissertation, University of California at Berkeley, Berkeley, 2005Google Scholar
  12. 12.
    F. Sebastiano et al, Impulse based scheme for crystal-less ULP radios. Proc. IEEE Int. Symp. Circuits Syst. May, 1508–1511 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations