Advertisement

Low Power Impulse Radio Transceivers

  • Alyssa Apsel
  • Xiao Wang
  • Rajeev Dokania
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP, volume 124)

Abstract

Spectral allocation is critical for any radio architecture. A radio working within a given slice of spectrum has to cope with unwanted but co-existing interferers. These interferers can severely limit performance. To enable efficient and effective utilization of spectral resources government agencies across the world regulate the use of spectrum domestically and internationally. In the US, the Federal Communications Commission (FCC) designates different frequency bands for different applications while limiting radiation characteristics of radios operating in a specific band. While various commercial wireless communication systems such as GSM, CDMA etc. work on a licensed spectrum, FCC also provides various unlicensed spectral-bands, where one can transmit legally by simply complying with the radiation emission mask. Since cost of operation is an important factor for wireless sensor network deployment, operating radios in the unlicensed band is also desired. In this chapter, we specifically look at the FCC’s UWB spectral mask, and provide an example of a multi-band radio that operates in compliance with the spectral mask constraints placed by the FCC.

Keywords

Timing Pulse Federal Communication Commission Leakage Power Spectral Mask Output Voltage Swing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Revision of Part 15 the Commission’s rules regarding ultra-wideband transmission systems. FCC, ET Docket 98–153 (2002)Google Scholar
  2. 2.
    D.D. Wentzloff, A.P. Chandrakasan, A 47 pJ/pulse 3.1-to-5 GHz All-Digital UWB transmitter in 90 nm CMOS. ISSCC 2007, (2007, Feb.)Google Scholar
  3. 3.
    O. Salehi-Abari, C. Plett, A differential 5th derivative gaussian pulse generator for UWB transceivers, Circuits and systems (ISCAS). Proceedings of 2010 IEEE International Symposium 1089–1092 (May 30 2010–June 2 2010)Google Scholar
  4. 4.
    Haolu Xie, Xin Wang, A. Wang, Bin Zhao, Yumei Zhou, Bo Qin, Hongyi Chen, Zhihua Wang, A varying pulse width 5th-derivative gaussian pulse generator for UWB transceivers in CMOS. Radio and Wireless Symposium. IEEE. 171–174 (2008, 22–24 Jan.)Google Scholar
  5. 5.
    Tuan-Anh Phan, V. Krizhanovskii, Seok-Kyun Han, Sang-Gug Lee, Hyun-seo Oh, Nae-Soo Kim, 4.7 pJ/pulse 7th Derivative Gaussian Pulse Generator for Impulse Radio UWB. Circuits and Systems, 2007. ISCAS 2007. IEEE Int. Symp. 3043–3046 (2007, 27–30 May)Google Scholar
  6. 6.
    Yunliang Zhu; Zuegel, J.D., J.R. Marciante, Hui Wu; Distributed Waveform Generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation. Solid-State Circuits, IEEE J. 44(3), 808–823 (2009, March)Google Scholar
  7. 7.
    D.D. Wentzloff, A.P. Chandrakasan, A 47 pJ/pulse 3.1-to-5 GHz All-Digital UWB transmitter in 90 nm CMOS. ISSCC 2007, (2007, Feb.)Google Scholar
  8. 8.
    R. Dokania, X. Wang, S. Tallur, C. Dorta-Quinones, A. Apsel, A ultra lowpowerdual band UWB. impulse radio. Trans. Circuits Syst. -II, 57(7) (2010, July)Google Scholar
  9. 9.
    J.L. Hill, D.E. Culler, System architecture for wireless sensor networks. PhD thesis, (University of California, Berkely, 2003)Google Scholar
  10. 10.
    T. Norimatsu, R. Fujiwara, M. Kokubo, M. Miyazaki, A. Maeki, Y. Ogata, S. Kobayashi, N. Koshizuka, K. Sakamura, A UWB-IR transmitter with digitally controlled pulse generator. Solid-State Circuits, IEEE J. 42(6), 1300–1309 (2007, June)Google Scholar
  11. 11.
    X. Chen, Kiaei, S., Pulse generation scheme for low-power low-complexity impulse ultra-wideband. Electron. Lett. 43 (1), 44–45 (2007, 4 Jan.)Google Scholar
  12. 12.
    P.P. Mercier, D.C. Daly, A.P. Chandrakasan, An Energy-Efficient All-Digital UWB Transmitter employing dual capacitively-coupled pulse-shaping drivers, solid-state circuits . IEEE J. 44(6), 1679–1688 (2009, June)Google Scholar
  13. 13.
    J. Ayadi, J. Gerrits, Q. Xu, A. Hutter, P. Eggers, I. Kovacs, Design and performance analysis of UWB communication system for low data rate WPAN Applications, Report, IST PACWOMAN—Power aware communications for wireless optimised 2 area networks, http://www.imec.be/pacwoman/Welcome.shtml
  14. 14.
    F.S. Lee, A.P. Chandrakasan, A 2.5nJ/b 0.65V 3-to-5 GHz Subbanded UWB receiver in 90 nm CMOS. ISSCC 2007, (2007, 11–15 Feb.)Google Scholar
  15. 15.
    X. Zhang, R. Dokania, M. Mukadam, A. Apsel, A. successive approximation based process-invariant ring oscillator. IEEE. Circuits Syst. Paris, France (2010, June)Google Scholar
  16. 16.
    R. Dokania, X. Wang, C. Dorta-Quinones, W. Godycki, S. Tallur, A. Apsel, A 6uW, 100 Kbps, 3–5 GHz, UWB Impulse Radio Transmitter. International symposium on low power electronics and design, August 18–20, Austin, Texas (2010)Google Scholar
  17. 17.
    D.D. Wentzloff, A.P. Chandrakasan, Gaussian pulse generators for subbanded ltrawideband transmitters. IEEE Trans. Microw. Theory Tech. 54, 1647–1655 (2006, Jun.)Google Scholar
  18. 18.
    T. Norimatsu et. al., A UWB-IR transmitter with digitally controlled pulse generator. IEEE J. Solid-State Circuits. 42, 1300–1309 (2007, June).Google Scholar
  19. 19.
    J. Ryckaert et al., Carrier-based UWB impulse radio: Simplicity, flexibility, and pulser implementation in 0.18-micron CMOS. in Proc. IEEE Int Conf. Ultra-Wideband. 432–437 (2005, Sep.)Google Scholar
  20. 20.
    J. Ryckaert et al., A 0.65-to-1.4nJ/burst 3-to-10 GHz UWB Digital TX in 90 nm CMOS for IEEE 802.15.4a. ISSCC. Dig. Tech. Papers. 20–121. (2007, Feb.)Google Scholar
  21. 21.
    A.T. Phan, J. Lee, V. Krizhanovskii, Q. Le, S. Han, S. Lee, Energy-efficient low-complexity CMOS Pulse Generator for Multiband UWB Impulse Radio. IEEE TCAS- I, 55(11), (2008, Dec.)Google Scholar
  22. 22.
    L. Smaini et al., Single-Chip CMOS Pulse Generator for UWB Systems. IEEE J. Solid-State Circuits. 41, 1551–1561 (2006)Google Scholar
  23. 23.
    J. Ryckaert, M. Badaroglu et al., V. De Heyn, A 16 mA UWB 3-to-5 GHz 20Mpulses/s Quadrature Analog Correlation Receiver in 0.18 µm CMOS. ISSCC 2006, (2006, Feb.)Google Scholar
  24. 24.
    I. D. O’Donnell, S.W. Chen, S. B.T. Wang, R.W. Brodersen, An integrated, low power, ultra-wideband transceiver architecture for lowrate, indoor wireless systems. Proc. IEEE CAS Workshop Wireless Communications and Networking, (2002, Sep.)Google Scholar
  25. 25.
    F. Zhang, A. Jha, R. Gharpurey, P. Kinget, An Agile, Ultra-wideband Pulse Radio Transceiver with Discrete-Time Wideband-IF. IEEE J. Solid-State Circuits (JSSC), (2009, May)Google Scholar
  26. 26.
    T. Terada, S. Yoshizimi, M. Musqsith, Y. Sanada, T. Kuroda, A CMOS Ultra-Wideband Impulse Radio Transceiver for 1-Mb/s Data Communications and +/–2.5-cm Range Finding. IEEE J. Solid-State Circuits. 41(4), (2006, Apr.)Google Scholar
  27. 27.
    F.S. Lee, A.P. Chandrakasan, A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS, Solid-State Circuits. IEEE J. 42(12), 2851–2859 (2007, Dec.)Google Scholar
  28. 28.
    B.P. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX Superregenerative Transceiver for Wireless Sensor Networks. in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2005, Feb.)Google Scholar
  29. 29.
    A. Porret, T. Melly, D. Python, C.C. Enz, E.A. Vittoz, An Ultralow-Power UHF transceiver integrated in a standard digital CMOS Process: Architecture and Receiver. IEEE J. Solid-State Circuits 36, 452–466 (2001)Google Scholar
  30. 30.
    J. Jarvinen, J. Kaukovouri, J. Ryynanen, J. Jussila, K. Kivekas, K. M. Honkanen Halonen, 2.4 GHz Receiver for Sensor Applications. IEEE J. Solid-State Circuits 40(7), 1426–1433 (2005, July)Google Scholar
  31. 31.
    Y.-H. Chen, C.-W. Wang, C.-F. Lee, T.-Y. Yang, C.-F. Liao, G.-K. Ma, S.-I. Liu, A 0.18μm CMOS Receiver for 3.1 to 10.6 GHz MB-OFDM UWB Communication Systems. IEEE Proceedings of the Radio Frequency Integrated Circuits Symposium (2006)Google Scholar
  32. 32.
    B. Cook, A. Berny, A. Molnar, S. Lanzisera, J. Pister, An Ultra-Low Power 2.4 GHz RF Transceiver for Wireless Sensor Networks in 0.13μm CMOS with 400 mV Supply and an Integrated Passive RX Front-End. IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers (2006)Google Scholar
  33. 33.
    J. Ryckaert, M. Badaroglu, V.D. Heyn, G.V. der Plas, P. Nuzzo, A. Baschirotto, S. D’Amico, C. Desset, H. Suys, M. Libois, B.V. Poucke, P. Wambacq, B. Gyselinckx, A 16 mA UWB 3-to-5 GHz 20Mpulses/s Quadrature Analog Correlation Receiver in 0.18 μm CMOS. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2006 Feb.)Google Scholar
  34. 34.
    P. Choi, H. Park, I. Nam, K. Kang, Y. Ku, S. Shin, S. Park, T. Kim, H. Choi, S. Kim, S. Park, M. Kim, S. Park, K. Lee, An Experimental Coin-sized Radio for Extremely Low Power WPAN (IEEE802.15.4) Application at 2.4 GHz. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2003)Google Scholar
  35. 35.
    C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, E. MacRobbie, A 43 mW Bluetooth Transceiver with – 91 dBm Sensitivity. IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers (2003)Google Scholar
  36. 36.
    S. Verma, J. Xu, M. Hamada, T.H. Lee, A 17 mW 0.66mm2 Direct-Conversion Receiver for 1 Mb/s Cable Replacement. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2005)Google Scholar
  37. 37.
    S. Khorram, H. Darabi, Z. Zhou, Q. Li, B. Marholev, J. Chiu, J. Castaneda, H.-M. Chien, S.B. Anand, S. Wu, M.-A. Pan, R. Roofougaran, H.J. Kim, P. Lettieri, B. Ibrahim, J.J. Rael, L.H. Tran, E. Geronaga, H. Yeh, T. Frost, J. Trachewsky, A. Rofougaran, A Fully Integrated SOC for 802.11b in 0.18μm CMOS. IEEE J. Solid-State Circuits. 40(12), 2492–2501 (2005, Dec.)Google Scholar
  38. 38.
    A.A. Emira, A. Valdes-Garcia, B. Xia, A.N. Mohieldin, A. Valero-Lopez, S.T. Moon, C. Xin, E. Sanchez-Sinencio, A Dual-Mode 802.11b/Bluetooth Receiver in 0.25 μm BiCMOS. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2004)Google Scholar
  39. 39.
    T. Aytur, H.-C. Kang, R. Mahadevappa, M. Altintas, S. ten Brink, T. Diep, C.-C. Hsu, F. Shi, F.-R. Yang, C.-C. Lee, R.-H. Yan, B. Razavi, A Fully Integrated UWB PHY in 0.13 μm CMOS. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2006)Google Scholar
  40. 40.
    Y.J. Cho, K.H. Kim, D.H. Choi, S.S. Lee, S. Park, A Miniature UWB Planar Monopole Antenna With 5-GHz Band-Rejection Filter and the Time-Domain Characteristics. IEEE Trans. Antennas Propag. 54(5) (2006, May)Google Scholar
  41. 41.
    B.W. Cook, A. Berny, A. Molnar, S. Lanzisera, K.S.J. Pister, Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply. IEEE J. Solid State Circuits (JSSC) (2006, Dec.)Google Scholar
  42. 42.
    X. Y. Wang, R. K. Dokania, and A. B. Apsel “A Crystal-Less Self-Synchronized Bit-Level Duty-Cycled IR-UWB Transceiver System” IEEE Transactions on Circuits and Systems I. 60(9) (2013, Sept.)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations