Advertisement

Kinetics of Ion Drift

  • Ming He
  • Toh-Ming Lu
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 157)

Abstract

In previous chapters, we have shown that various metal species, including barrier metals and self-forming barrier metals, can penetrate into dielectrics under BTS. Generally, the existence of metal contamination inside dielectrics will significantly degrade dielectric reliability, causing early breakdown and large leakage current [1]. Therefore, a main interest is to understand the impact of this metal contamination on dielectric reliability. Before we can proceed further on this topic, however, there is one question that needs to be clarified: the kinetics issue. How fast can these metallic species migrate inside the dielectrics? A key parameter needed to describe the kinetics is diffusivity (D). With a known stressing condition, diffusivity can be used to calculate the distribution of metal contamination inside the dielectric, from which the total number of metal species within the dielectric can be estimated. Also, the effective electric field distribution inside the dielectric, after including the ionic field effect, can be evaluated [2, 3]. These factors are crucial in order to predict the dielectric lifetime, which we will discuss further in Chap. 9. In addition, the operation of memory devices that uses the drift of ions to perform functions, such as resistive switches and solid electrolyte devices, relies on the buildup of a conductive metallic filament between the electrodes. To decide the working temperature and the threshold electric field needed for switching, it is necessary to know the metal migration speed inside the dielectric [4].

Keywords

External Electric Field Resistive Switch Dielectric Interface Threshold Electric Field Effective Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Gonella, Key reliability issues for copper integration in damascene architecture. Microelectron. Eng. 55(1–4), 245–255 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, J. Lloyd, R. Kontra, J. Aitken, A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. in Proceedings of the 44th IEEE International Reliability Physical Symposium, San Jose, 26–30 Mar 2006, pp. 46–53Google Scholar
  3. 3.
    R.S. Achanta, W.N. Gill, J.L. Plawsky, Copper ion drift in integrated circuits: effect of boundary conditions on reliability and breakdown of low-k dielectric. J. Appl. Phys. 103(1), 014907 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21(42), 425205 (2010)CrossRefGoogle Scholar
  5. 5.
    S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, New York, 2001), p. 48Google Scholar
  6. 6.
    J.-Y. Kwon, K.-S. Kim, Y.-C. Joo, K.-B. Kim, Simulation of the copper diffusion profile in SiO2 during bias temperature stress (BTS) test. Jpn. J. Appl. Phys. 41, L99–L101 (2002)CrossRefGoogle Scholar
  7. 7.
    B.G. Willis, D.V. Lang, Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467(1–2), 284–293 (2004)CrossRefGoogle Scholar
  8. 8.
    A.A. Istratov, E.R. Weber, Physics of copper in silicon. J. Electrochem. Soc. 149(1), G21–G30 (2002)CrossRefGoogle Scholar
  9. 9.
    O.R. Rodriguez, W.N. Gill, J.L. Plawsky, T.Y. Tsui, S. Grunow, Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry. J. Appl. Phys. 98(12), 123514 (2005)CrossRefGoogle Scholar
  10. 10.
    A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 37Google Scholar
  11. 11.
    J.C. Vickerman, A. Brown, N.M. Reed, Secondary Ion Mass Spectrometry Principles and Applications (Oxford University Press, New York, 1989), p. 187Google Scholar
  12. 12.
    K. Yamada, N. Fujiyama, J. Sameshima, R. Kamoto, A. Karen, SIMS depth profile of copper in low-k dielectrics under electron irradiation for charge compensation. Appl. Surf. Sci. 203–204, 512–515 (2003)CrossRefGoogle Scholar
  13. 13.
    A.L.S. Loke, J.T. Wetzel, P.H. Townsend, T. Tanabe, R.N. Vrtis, M.P. Zussman, D. Kumar, C. Ryu, S.S. Wong, Kinetics of copper drift in low-k polymer inter level dielectrics. IEEE Electron Device Lett. 46(11), 2178–2187 (1999)Google Scholar
  14. 14.
    M.W. Hillen, G. Greeuw, J.F. Verweij, On the mobility of potassium ions in SiO2. J. Appl. Phys. 50(7), 4834–4837 (1979)CrossRefGoogle Scholar
  15. 15.
    I.-C. Chen, S.E. Holland, C. Hu, Electrical breakdown in thin gate and tunneling oxides. IEEE J. Solid-St. Circ. 20(1), 333–342 (1985)CrossRefGoogle Scholar
  16. 16.
    Y. Ou, P.I. Wang, M. He, T.-M. Lu, P. Leung, T.A. Spooner, Conduction mechanisms of Ta/porous SiCOH films under electrical bias. J. Electrochem. Soc. 155(12), G283–G286 (2008)CrossRefGoogle Scholar
  17. 17.
    A.L.S. Loke, R. Changsup, C.P. Yue, J.S.H. Cho, S.S. Wong, Kinetics of copper drift in PECVD dielectrics. IEEE Electron Device Lett. 17(12), 549–551 (1996)CrossRefGoogle Scholar
  18. 18.
    H. Cui, I.B. Bhat, S.P. Murarka, H. Lu, W.-J. Hsia, W. Catabay, Copper drift in methyl-doped silicon oxide film. J. Vac. Sci. Technol. B 20(5), 1987–1993 (2002)CrossRefGoogle Scholar
  19. 19.
    H. Nishino, T. Fukuda, H. Yanazawa, H. Matsunaga, Analysis of leakage current in Cu/SiO2/Si/Al capacitors under bias-temperature stress. Jpn. J. Appl. Phys. 42, 6384 (2003)CrossRefGoogle Scholar
  20. 20.
    K.-S. Kim, Y.-C. Joo, K.-B. Kim, J.-Y. Kwon, Extraction of Cu diffusivities in dielectric materials by numerical calculation and capacitance-voltage measurement. J. Appl. Phys. 100(6), 063517 (2006)CrossRefGoogle Scholar
  21. 21.
    M. He, Y. Ou, P.-I. Wang, T.-M. Lu, Kinetics of Ta ions penetration into porous low-k under bias-temperature stress. Appl. Phys. Lett. 96(22), 222901–222903 (2010)CrossRefGoogle Scholar
  22. 22.
    J.D. McBrayer, R.M. Swanson, T.W. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133(6), 1242–1246 (1986)CrossRefGoogle Scholar
  23. 23.
    Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, Copper transport in thermal SiO2. J. Electrochem. Soc. 140, 2427–2432 (1993)CrossRefGoogle Scholar
  24. 24.
    M. He, S. Novak, L. Vanamurthy, H. Bakhru, J. Plawsky, T.-M. Lu, Cu penetration into low-k dielectric during deposition and bias-temperature stress. Appl. Phys. Lett. 97(25), 252901 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Applied Physics and AstronomyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Integrated ElectronicsRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations