Skip to main content

Metal–Dielectric Diffusion Processes: Fundamentals

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 157))

Abstract

There are two main mechanisms by which metal species can migrate into dielectrics. One is diffusion of metal atoms at an elevated temperature driven by the metal concentration gradient. The other is drift of metal-ions as a result of an external electric field. In the latter case, metal-ions have to be generated at the metal–dielectric interface for the drift to begin. The origin of metal-ion generation is related to the chemical interaction between the metal and the dielectric at their interface. For example, a metal oxide may be formed if there is an oxidant residing at the interface. In this chapter, we attempt to describe a coherent treatment of ion generation and drift based on the thermochemistry that occurs at the metal–dielectric interface. The basic formulation of atomic diffusion and ionic drift is reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.W. Hillen, J.F. Verwey, Instabilities in Silicon Devices, vol 1 (Elsevier, Amsterdam, 1986), p. 416

    Google Scholar 

  2. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, New York, 2007), p. 27

    Google Scholar 

  3. A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 37

    Google Scholar 

  4. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, New York, 2001), p. 48

    Google Scholar 

  5. J.Y. Kwon, K.S. Kim, Y.C. Joo, K.B. Kim, Simulation of the copper diffusion profile in SiO2 during bias temperature stress (BTS) test. Jpn. J. Appl. Phys. 41, L99–L101 (2002)

    Article  Google Scholar 

  6. M. Baklanov, K. Maex, M. Green, Dielectric Films for Advanced Microelectronics (Wiley, New York, 2007)

    Book  Google Scholar 

  7. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, S.R. Forrest, Chemistry and electronic properties of metal-organic semiconductor interfaces:Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys. Rev. B 54, 13748 (1996)

    Article  Google Scholar 

  8. K. Nagao, J.B. Neaton, N.W. Ashcroft, First-principles study of adhesion at Cu/SiO2 interfaces. Phys. Rev. B 68(12), 125403 (2003)

    Article  Google Scholar 

  9. P. Atkins, J.d. Paula, Physical Chemistry, 7th edn. (Freeman, San Francisco, 2002), p. 705

    Google Scholar 

  10. J.W. McPherson, H.C. Mogul, Underlying physics of the thermochemical E modelE model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998)

    Article  Google Scholar 

  11. R.S. Achanta, W.N. Gill, J.L. Plawsky, G. Haase, Role of reactive surface oxygen in causing enhanced copper ionization in a low-k polymer. J. Vac. Sci. Technol. B 24, 1417 (2006)

    Article  Google Scholar 

  12. K.L. Fang, B.Y. Tsui, Metal drift induced electrical instability of porous low dielectric constant film. J. Appl. Phys. 93, 5546–5550 (2003)

    Article  Google Scholar 

  13. T. Fukuda, H. Nishino, A. Matsuura, H. Matsunaga, Force driving Cu diffusion into interlayer dielectrics. Jpn. J. Appl. Phys. 41, 537 (2002)

    Article  Google Scholar 

  14. M. He, Y. Ou, P.I. Wang, T.M. Lu, Kinetics of Ta ions penetration into porous low-k dielectriclow-k dielectrics under bias-temperature stress. Appl. Phys. Lett. 96, 222901 (2010)

    Article  Google Scholar 

  15. D. Kapila, J.L. Plawsky, Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach. Chem. Eng. Sci. 50, 2589 (1995)

    Article  Google Scholar 

  16. A.L.S. Loke, R. Changsup, C.P. Yue, J.S.H. Cho, S.S. Wong, Kinetics of copper drift in PECVD dielectrics. IEEE Electron Device Lett. 17, 549–551 (1996)

    Article  Google Scholar 

  17. A. Mallikarjunan, S.P. Murarka, T.M. Lu, Mobile ion detection in organosiloxane polymer using triangular voltage sweep. J. Electrochem. Soc. 149, F155 (2002)

    Article  Google Scholar 

  18. A. Mallikarjunan, S.P. Murarka, T.M. Lu, Metal drift behavior in low dielectric constant organosiloxane polymer. Appl. Phys. Lett. 79, 1855–1857 (2001)

    Article  Google Scholar 

  19. S. Rogojevic, A. Jain, F. Wang, W.N. Gill, J.L. Plawsky, Interaction between silica xerogel and copper. J. Electrochem. Soc. 149, F122 (2002)

    Article  Google Scholar 

  20. S. Rogojevic, A. Jain, F. Wang, W.N. Gill, P.C. Wayner, J.L. Plawsky, T.M. Lu, G.R. Yang, W.A. Lanford, A. Kumar, H. Bakhru, N.A. Roy, Interactions between silican xerogel and tanatalum. J. Vac. Sci. Technol. B 19, 354 (2001)

    Article  Google Scholar 

  21. P.I. Wang, J.S. Juneja, Y. Ou, T.M. Lu, G.S. Spencer, Instability of metal barrier with porous methyl silsesquioxane films. J. Electrochem. Soc. 155, H53 (2008)

    Article  Google Scholar 

  22. B.G. Willis, D.V. Lang, Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467, 284 (2004)

    Article  Google Scholar 

  23. O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th edn. (Pergamon Press, New York, 1979)

    Google Scholar 

  24. J.D. McBrayer, R.M. Swanson, T.W. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133, 1242–1246 (1986)

    Article  Google Scholar 

  25. A. Mallikarjunan, S.P. Murarka, T.M. Lu, Separation of copper ion-induced and intrinsic polymer instabilities in polyarylether using triangular voltage sweep. J. Appl. Phys. 95, 1216–1221 (2004)

    Article  Google Scholar 

  26. I. Fisher, M. Eizenberg, Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests. Thin Solid Films 516, 4111–4121 (2008)

    Article  Google Scholar 

  27. M. He, H. Li, P.-I. Wang, T.M. Lu, Bias temperature stress of Al on porous low-k dielectriclow-k dielectrics. Microelectron. Reliab. 51(8), 1342–1345 (2011)

    Article  Google Scholar 

  28. A. Mallikarjunan, G.R. Yang, S.P. Murarka, T.M. Lu, Plasma surface modification for ion penetration barrier in organosiloxane polymer. J. Vac. Sci. Technol. B 20, 1884 (2002)

    Article  Google Scholar 

  29. M. Zier, S. Oswald, R. Reiche, M. Kozlowska, K. Wetzig, Interface formation and reactions at Ta-Si and Ta-SiO2 interfaces studied by XPS and ARXPS. J. Elec. Spec. Relat. Phenom. 137–140, 229–233 (2004)

    Article  Google Scholar 

  30. T.L. Tan, C.L. Gan, A.Y. Du, C.K. Cheng, Effect of Ta migration from sidewall barrier on leakage current in Cu/SiOCH low-k dielectriclow-k dielectrics. J. Appl. Phys. 106, 043517 (2009)

    Article  Google Scholar 

  31. J.A. Kelber, C. Niu, K. Shepherd, D.R. Jennison, A. Bogicevic, Copper wetting of alpha-Al2O3(0001): theory and experiment. Surf. Sci. 446, 76–88 (2000)

    Article  Google Scholar 

  32. M. He, S. Novak, L. Vanamurthy, H. Bakhru, J. Plawsky, T.M. Lu, Cu penetration into low-k dielectriclow-k dielectric during deposition and bias-temperature stress. Appl. Phys. Lett. 97(25), 252901 (2010)

    Article  Google Scholar 

  33. E. Bauer, Epitaxy of metals on metals. Appl. Surf. Sci. 11–12, 479–494 (1982)

    Google Scholar 

  34. E. Orhan, F. Tessier, R. Marchand, Synthesis and energetics of yellow TaON. Solid State Sci. 4(8), 1071–1076 (2002)

    Article  Google Scholar 

  35. W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 91 edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, M., Lu, TM. (2012). Metal–Dielectric Diffusion Processes: Fundamentals. In: Metal-Dielectric Interfaces in Gigascale Electronics. Springer Series in Materials Science, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1812-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1812-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1811-5

  • Online ISBN: 978-1-4614-1812-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics