Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 157))

Abstract

All major electronic devices and systems contain layers of different materials, including metals, semiconductors, and dielectrics, with electrical resistances spanning a difference of over 20 orders of magnitude. Interfaces between these materials include dielectric-semiconductor, metal-semiconductor and metal-dielectric. A well-known example of the first is the SiO2–Si interface in the metal-dielectric-semiconductor structure in a Si transistor. The quality of this interface controls the operation of a transistor. Metal-semiconductor interfaces are critical for the operation of rectifying diodes, such as Schottky diodes. Metal-dielectric interface is another important interface, which exists in practically every major electronic system, not only as part of the active devices such as the transistors, but also in the passive components such as interconnects and packaging. In this introductory chapter, we discuss the requirements of such metal-dielectric interfaces in electronic devices and systems, particularly in integrated circuit (IC) applications. Material stability across the metal-dielectric interfaces is required in order to guarantee reliable and consistent electrical functions. Here we discuss metal-dielectric interface stability and its relationship to the operation of advanced gigascale electronic devices and systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors: ITRS. (2009) Semiconductor Industry Association, San Jose, CA. http://www.itrs.net/Links/2009ITRS/Home2009.htm

  2. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley & Sons, New Jersey, 2007)

    Google Scholar 

  3. S.P. Murarka, I.V. Verner, R.J. Gutmann, Copper-Fundamental Mechanisms for Microelectronic Applications (Wiley & Sons, New York, 2000)

    Google Scholar 

  4. J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005)

    Article  Google Scholar 

  5. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  6. M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya, Solid State Ionics for Batteries (Springer, New York, 2005)

    Google Scholar 

  7. T. Gupta, Copper Interconnect Technology (Springer, New York, 2009)

    Book  Google Scholar 

  8. R. Rosenberg, D.C. Edelstein, C.K. Hu, K.P. Rodbell, Copper metallization for high performance silicon technology. Annu. Rev. Mater. Sci. 30, 229–262 (2000)

    Article  Google Scholar 

  9. Kubaschewski, O., Alcock, C.B.: Metallurgical Thermochemistry, 5th ed., New York (1979)

    Google Scholar 

  10. A. Mallikarjunan, S.P. Murarka, T.-M. Lu, Metal drift behavior in low dielectric constant organosiloxane polymer. Appl. Phys. Lett. 79, 1855–1857 (2001)

    Article  Google Scholar 

  11. K. Maex, M.R. Baklanov, D. Shamiryan, S.H. Brongersma, F. lacopi, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)

    Article  Google Scholar 

  12. J.P. Reynard, C. Verove, E. Sabouret, P. Motte, B. Descouts, C. Chaton, J. Michailos, K. Barla, Integration of fluorine-doped silicon oxide in copper pilot line for 0.12 mm technology. Microelectron. Eng. 60, 113–118 (2002)

    Article  Google Scholar 

  13. M. Baklanov, K. Maex, M. Green, Dielectric Films for Advanced Microelectronics (Wiley & Sons, New York, 2007)

    Book  Google Scholar 

  14. P.S. Ho, J. Leu, W.W. Lee, Low dielectric constant materials for IC applications (Springer, New York, 2003)

    Book  Google Scholar 

  15. A. Grill, Porous pSiCOH ultralow-k dielectrics for chip interconnects prepared by PECVD. Annu. Rev. Mater. Res. 39, 49–69 (2009)

    Article  Google Scholar 

  16. M. Ree, J. Yoon, K. Heo, Low-K Nanoporous Interdielectrics: Materials (Thin Film Fabrications, Structures and Properties. Nova Science Publishers, New York, 2010)

    Google Scholar 

  17. C. Gaire, Y. Ou, H. Arao, M. Egami, A. Nakashima, R.C. Picu, G.-C. Wang, T.-M. Lu, Mechanical properties of porous methyl silsesquioxane and nanoclustering silica films using atomic force microscope. J. Porous. Mater. 17, 11 (2010)

    Article  Google Scholar 

  18. L. Vanasupa, Y.-C. Joo, P.R. Besser, S. Pramanick, Texture analysis of damascene-fabricated Cu lines by x-ray diffraction and electron backscatter diffraction and its impact on electromigration performance. J. Appl. Phys. 85, 2583–2590 (1999)

    Article  Google Scholar 

  19. C.M. Tan, Electromigration in ULSI Interconnections (International Series on Advances in Solid State Electronics and Technology) (World Scientific, Singapore, 2010)

    Google Scholar 

  20. E.T. Ogawa, L. Ki-Don, V.A. Blaschke, P.S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans Rel. 51(4), 403–419 (2002)

    Article  Google Scholar 

  21. E.G. Liniger, C. Dziobkowski, Effect of oxygen at the Cu-SiCxNy interface on electromigration performance of interconnect structures. Thin Solid Films 513(1–2), 295–299 (2006)

    Article  Google Scholar 

  22. Y. Ou, P.I. Wang, M. He, T.M. Lu, P. Leung, T.A. Spooner, Conduction mechanisms of Ta/porous SiCOHSiCOH films under electrical bias. J. Electrochem. Soc. 155(12), G283–G286 (2008)

    Article  Google Scholar 

  23. R. Gonella, Key reliability issues for copper integration in damascene architecture. Microelectron. Eng. 55(1–4), 245–255 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, M., Lu, TM. (2012). Introduction. In: Metal-Dielectric Interfaces in Gigascale Electronics. Springer Series in Materials Science, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1812-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1812-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1811-5

  • Online ISBN: 978-1-4614-1812-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics