Skip to main content

1H-Magnetic Resonance Spectroscopy of Cerebral Phenylalanine Content and its Transport at the Blood-Brain Barrier

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) has been used in multiple studies to quantify the cerebral phenylalanine (Phe) content in humans, mostly phenylketonuria (PKU) patients. PKU has also been extensively studied by magnetic resonance imaging (MRI). The major published findings about MRS and MRI in PKU are summarized. With different MRI techniques, the characteristic white matter lesions in PKU patients have been characterized, providing a picture that is in agreement with partly reversable dysmyelination, possibly in the form of spongiform alterations. The 1H-MRS results from studies of PKU patients are summarized in a metaanalysis where major factors for differences between the published studies are identified and essential methodologic specifics needed for the determination of Phe concentrations are given. It was found that the steady state blood/brain Phe concentration ratio seems to be fairly stable for the large majority of PKU patients, leaving little room for individual dietary treatment, based on potential individual sensitivity to dietary Phe. Furthermore, 1H-MRS has been used to investigate the dynamics of cerebral Phe uptake in humans with and without PKU. The theoretical background for the description of the blood-brain-barrier (BBB) dynamics is given and the main results from these studies described, among them the documentation of a BBB blockade for Phe inflow by oral supplementation with large neutral amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data from the Münster Group (Möller et al. 1997) was first combined and then divided into two cohorts: data from the early papers (Möller et al. 1997; Moller et al. 1998) in one cohort, the newer data from a more recent publication (Weglage et al. 2001b) which seem to have been obtained with somewhat different methodology (Pietz et al. 2002) into another.

References

  • Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A (2007) Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 32:645–668

    Article  PubMed  Google Scholar 

  • Avison MJ, Herschkowitz N, Novotny EJ, Petroff OAC, Rothman DL, Colombo JP, Bachmann C, Shulman RG, Prichard JW (1990) Proton NMR observation of phenylalanine and an aromatic metabolite in the rabbit brain in vivo. Pediatr Res 27:566–570

    Article  PubMed  CAS  Google Scholar 

  • Berry HK, Brunner RL, Hunt MM, White PP (1990) Valine, isoleucine, and leucine. A new treatment for phenylketonuria. Am J Dis Child 144:539–543

    PubMed  CAS  Google Scholar 

  • Bick U, Ullrich K, Stober U, Moller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U (1993) White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr 152:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Bick U, Ullrich K, Stöber U, Möller HE, Fahrendorf G, Ludolph AC, Wendel U (1991) MRI white matter abnormalities in patients with treated hyperphenylalaninemia: disturbed myelination or toxic edema? Neuropediatrics 22:174

    Google Scholar 

  • Bik-Multanowski M, Pietrzyk JJ (2007) Brain phenylalanine measurement in patients with phenylketonuria: a serious diagnostic method or just reading tea leaves? Mol Genet Metab 91:297–298

    Article  PubMed  CAS  Google Scholar 

  • Cleary MA, Walter JH, Wraith JE, Jenkins JPR, Alani SM, Tyler K, Whittle D (1994) Magnetic resonance imaging of the brain in phenylketonuria. Lancet 344:87–90

    Article  PubMed  CAS  Google Scholar 

  • Dezortova M, Hajek M, Tintera J, Hejcmanova L, Sykova E (2001) MR in phenylketonuria-related brain lesions. Acta Radiol 42:459–466

    PubMed  CAS  Google Scholar 

  • de Graaf RA (2012) Principles of 1H NMR spectroscopy in vivo. In: Choi I-Y, Gruetter R (eds) Advances in Neurobiology, Vol 4, Chapter 5. Springer, New York, pp 133–148

    Google Scholar 

  • Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Shulman RG (1996) 1H NMR studies of glucose transport in the human brain. J Cereb Blood Flow Metab 16:427–438

    Article  PubMed  CAS  Google Scholar 

  • Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R (2002) Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model fitting. Magn Reson Med 48:440–453

    Article  PubMed  CAS  Google Scholar 

  • Hommes FA, Lee JS (1990) The control of 5-hydroxytryptamine and dopamine synthesis in the brain: a theoretical approach. J Inherit Metab Dis 13:37–57

    Article  PubMed  CAS  Google Scholar 

  • Iles RA (2008) Nuclear magnetic resonance spectroscopy and genetic disorders. Curr Med Chem 15:15–36

    Article  PubMed  CAS  Google Scholar 

  • Knudsen GM, Hasselbalch S, Toft PB, Christensen E, Paulson OB, Lou H (1995) Blood-brain barrier transport of amino acids in healthy controls and in patients with phenylketonuria. J Inherit Metab Dis 18:653–664

    Article  PubMed  CAS  Google Scholar 

  • Knudsen GM, Paulson OB (1998) Measurement of blood-brain barrier in humans using indicator diffusion. In: Pardridge WM (ed) Introduction to the blood-brain barrier. Methodology, biology and pathology. University Press, Cambridge, pp 133–139

    Chapter  Google Scholar 

  • Knudsen GM, Pettigrew KD, Patlak CS, Hertz MM, Paulson OB (1990) Asymmetrical transport of amino acids across the blood-brain barrier in humans. J Cereb Blood Flow Metab 10:698–706

    Article  PubMed  CAS  Google Scholar 

  • Koch R, Moats R, Guttler F, Guldberg P, Nelson M Jr (2000) Blood-brain phenylalanine relationships in persons with phenylketonuria. Pediatrics 106:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Kono K, Okano Y, Nakayama K, Hase Y, Minamikawa S, Ozawa N, Yokote H, Inoue Y (2005) Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology 236:630–636

    Article  PubMed  Google Scholar 

  • Kreis R (2000) Comments on in vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 159(Suppl 2):S126–S128

    Article  PubMed  CAS  Google Scholar 

  • Kreis R, Pietz J, Penzien J, Herschkowitz N, Boesch C (1995) Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic resonance spectroscopy. J Magn Reson Series B 107:242–251

    Article  CAS  Google Scholar 

  • Kreis R, Salvisberg C, Lutz T, Boesch C, Pietz J (2005) Visibility of vascular phenylalanine in dynamic uptake studies in humans using magnetic resonance spectroscopy. Magn Reson Med 54:435–438

    Article  PubMed  CAS  Google Scholar 

  • Kreis R, Vermathen P, Boesch C (2004) Metabolite and baseline characterization in the downfield region of the human cerebral 1H-MR spectrum in healthy subjects and patients with phenylketonuria. 12th Meeting of the International Society of Magnetic Resonance in Medicine. International Society of Magnetic Resonance in Medicine, Kyoto, p 303

    Google Scholar 

  • Kreis R, Zwygart K, Boesch C, Nuoffer JM (2009) Reproducibility of cerebral phenylalanine levels in patients with phenylketonuria determined by 1H-MR spectroscopy. Magn Reson Med 62:11–16

    Article  PubMed  CAS  Google Scholar 

  • Kreis R, Zwygart K, Boesch C, Pietz J, Nuoffer JM (2007) Probing the blood/brain barrier in neonates: 1H-MR spectroscopy shows low protection against high phenylalanine. 15th Meeting of the International Society of Magnetic Resonance in Medicine. International Society of Magnetic Resonance in Medicine, Berlin, p 2309

    Google Scholar 

  • Laule C, Vavasour IM, Madler B, Kolind SH, Sirrs SM, Brief EE, Traboulsee AL, Moore GR, Li DK, MacKay AL (2007) MR evidence of long T2 water in pathological white matter. J Magn Reson Imaging 26:1117–1121

    Article  PubMed  Google Scholar 

  • Leuzzi V, Bianchi MC, Tosetti M, Carducci CL, Carducci CA, Antonozzi I (2000) Clinical significance of brain phenylalanine concentration assessed by in vivo proton magnetic resonance spectroscopy in phenylketonuria. J Inherit Metab Dis 23:563–570

    Article  PubMed  CAS  Google Scholar 

  • Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Carducci C, Antonozzi I, Burroni M, Carnevale F, Chiarotti F, Popolizio T, Giannatempo GM, D’Alesio V, Scarabino T (2007) The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1H MRS) study. J Inherit Metab Dis 30: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Malamud N (1966) Neuropathology of phenylketonuria. J Neuropathol Exp Neurol 25:254–268

    Article  PubMed  CAS  Google Scholar 

  • Möller HE, Feldmann R, Santer R, Ullrich K, Weglage J (2006) Phenylketonuria and blood-brain barrier competition investigated by magnetic resonance spectroscopy. In: Blau N. (Ed) Advances in Phenylketonuria and Tetrahydrobiopterin, SPS Verlagsgesellschaft. Heilbronn, pp 137–160

    Google Scholar 

  • Moller HE, Ullrich K, Weglage J (2000) In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 159(Suppl 2):S121–S125

    Article  PubMed  CAS  Google Scholar 

  • Möller HE, Vermathen P, Ullrich K, Weglage J, Koch HG, Peters PE (1995) In vivo NMR spectroscopy in patients with phenylketonuria: changes of cerebral phenylalanine levels under dietary treatment. Neuropediatrics 26:199–202

    Article  PubMed  Google Scholar 

  • Moller HE, Weglage J, Wiedermann D, Ullrich K (1998) Blood-brain barrier phenylalanine transport and individual vulnerability in phenylketonuria. J Cereb Blood Flow Metab 18:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K (1997) Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res 778: 329–337

    Article  PubMed  Google Scholar 

  • Moller LB, Paulsen M, Koch R, Moats R, Guldberg P, Güttler F (2005) Inter-individual variation in brain phenylalanine concentration in patients with PKU is not caused by genetic variation in the 4F2hc/LAT1 complex. Mol Genet Metab 86(Suppl 1):S119–S123

    Article  PubMed  CAS  Google Scholar 

  • National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108:972–982

    Article  Google Scholar 

  • Novotny EJ Jr, Avison MJ, Herschkowitz N, Petroff OAC, Prichard JW, Seashore R, Rothman DL (1995) In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr Res 37:244–249

    Article  PubMed  Google Scholar 

  • O’Kane RL, Hawkins RA (2003) Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab 285: E1167–E1173

    Google Scholar 

  • O’Kane RL, Vina JR, Simpson I, Hawkins RA (2004) Na+-dependent neutral amino acid transporters (A, ASC and N) of the blood-brain barrier: mechanisms for neutral amino acid removal. Am J Physiol Endocrinol Metab 287:E622–E629

    Article  Google Scholar 

  • Pardridge WM (1988) Phenylalanine transport at the human blood-brain barrier. In: Wurtman RJ, Ritter-Walker E (eds) Dietary phenylalanine and brain function. Birkhäuser, Boston, pp 56–62

    Google Scholar 

  • Pardridge WM (1998a) Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635–644

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1998b) Introduction to the Blood-Brain Barrier (Methodology, biology and pathology). University Press, Cambridge

    Book  Google Scholar 

  • Pearsen KD, Gean-Marton AD, Levy HL, Davis KR (1990) Phenylketonuria: MR imaging of the brain with clinical correlation. Radiology 177:437–440

    PubMed  CAS  Google Scholar 

  • Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE (2001) Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. AJNR Am J Neuroradiol 22:1583–1586

    PubMed  CAS  Google Scholar 

  • Pietz J, Kreis R (2007) MRS studies in PKU patients. International Symposium on “KU and other Hyperphenylalaninemias: where are we now?” Fulda, Germany

    Google Scholar 

  • Pietz J, Kreis R, Boesch C, Penzien J, Rating D, Herschkowitz N (1995) The dynamics of brain concentrations of phenylalanine and its clinical significance in patients with phenylketonuria determined by in vivo 1H magnetic resonance spectroscopy. Pediatr Res 38:657–663

    Article  PubMed  CAS  Google Scholar 

  • Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, Bremer HJ (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Pietz J, Kreis R, Schmidt H, Meyding-Lamade UK, Rupp A, Boesch C (1996) Phenylketonuria: findings at MR imaging and localized in vivo H-1 MR spectroscopy of the brain in patients with early treatment. Radiology 201:413–420

    PubMed  CAS  Google Scholar 

  • Pietz J, Lutz T, Zwygart K, Hoffmann GF, Ebinger F, Boesch C, Kreis R (2003a) Phenylalanine can be detected in brain tissue of healthy subjects by 1H magnetic resonance spectroscopy. J Inherit Metab Dis 26:683–691

    Article  PubMed  CAS  Google Scholar 

  • Pietz J, Rupp A, Burgard P, Boesch C, Kreis R (2002) No evidence for individual blood-brain ­barrier phenylalanine transport to influence clinical outcome in typical phenylketonuria patients. Ann Neurol 52:382–383

    Article  PubMed  Google Scholar 

  • Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, Kreis R (2003b) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53:654–662

    Article  PubMed  Google Scholar 

  • Pratt OE (1982) Transport inhibition in the pathology of phenylketonuria and other inherited metabolic diseases. J Inherit Metab Dis 5:75–81

    Article  CAS  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentration from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  • Rupp A, Kreis R, Zschocke J, Slotboom J, Boesch C, Rating D, Pietz J (2001) Variability of blood-brain ratios of phenylalanine in “ypical”patients with phenylketonuria. J Cereb Blood Flow Metab 21:276–284

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. Medical Publishing Division, McGraw-Hill, pp 1667–1724

    Google Scholar 

  • Sirrs SM, Laule C, Madler B, Brief EE, Tahir SA, Bishop C, MacKay AL (2007) Normal-appearing white matter in patients with phenylketonuria: water content, myelin water fraction, and metabolite concentrations. Radiology 242:236–243

    Article  PubMed  Google Scholar 

  • Smith CB, Kang J (2000) Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci USA 97:11014–11019

    Article  PubMed  CAS  Google Scholar 

  • Smith QR (2003) A review of blood-brain barrier transport techniques. In: Nag S (ed) The Blood-Brain Barrier. Biology and Research Protocols. Humana Press, Totowa, pp 193–208

    Chapter  Google Scholar 

  • Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP (1993) Brain MRI changes in phenylketonuria associations with dietary status. Brain 116:811–821

    Article  PubMed  Google Scholar 

  • Tkac I, Gruetter R (2005) Methodology of H-1 NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29:139–157

    Article  PubMed  CAS  Google Scholar 

  • Vermathen P, Capizzano AA, Maudsley AA (2000) Administration and (1)H MRS detection of histidine in human brain: application to in vivo pH measurement. Magn Reson Med 43:665–675

    Article  PubMed  CAS  Google Scholar 

  • Vermathen P, Robert-Tissot L, Pietz J, Lutz T, Boesch C, Kreis R (2007) Characterization of white matter alterations in phenylketonuria by magnetic resonance relaxometry and diffusion tensor imaging. Magn Reson Med 58:1145–1156

    Article  PubMed  Google Scholar 

  • Weglage J, Pietsch M, Feldmann R, Koch HG, Zschocke J, Hoffmann G, Muntau-Heger A, Denecke J, Guldberg P, Guttler F, Moller H, Wendel U, Ullrich K, Harms E (2001a) Normal clinical outcome in untreated subjects with mild hyperphenylalaninemia. Pediatr Res 49: 532–536

    Article  PubMed  CAS  Google Scholar 

  • Weglage J, Wiedermann D, Denecke J, Feldmann R, Koch HG, Ullrich K, Harms E, Moller HE (2001b) Individual blood-brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. Ann Neurol 50:463–467

    Article  PubMed  CAS  Google Scholar 

  • Weglage J, Wiedermann D, Feldmann R, Ullrich K, Moller HE (2002) Reply. Ann Neurol 52: 383–384

    Article  Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Many thanks to my collaborators, including Dr. Jean-Marc Nuoffer and in particular Dr. Joachim Pietz, without whose long-standing efforts and interest in improving our understanding of PKU our research would not have been possible. Support by the Swiss National Science Foundation is also gratefully acknowledged (3100A0-103938, 320000-120324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kreis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kreis, R. (2012). 1H-Magnetic Resonance Spectroscopy of Cerebral Phenylalanine Content and its Transport at the Blood-Brain Barrier. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_40

Download citation

Publish with us

Policies and ethics