Skip to main content

Brain Metabolic Compartmentalization, Metabolism Modeling, and Cerebral Activity-Metabolism Relationship

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Brain metabolism modeling is a powerful method for analyzing ­pre-steady-state and steady-state kinetics of 13C incorporation in brain metabolites resulting from consumption of 13C-labeled substrates. Studies on brain metabolism modeling were initially carried out by considering a simple one-compartment model to analyze glutamate C4 labeling from [1-13C]glucose consumption. Thereafter, more sophisticated models including two or three compartments were used to analyze labeling of Glu, Gln, Asp and GABA at different carbon positions. In this chapter, after a brief recall of the cellular and molecular basis of brain metabolic compartmentalization, a survey of the metabolic pathways involved in the different models is presented. The discussion focuses on both the pathways generally considered in the modeling and those which are generally not considered, although ­evidence for their occurrence has been reported. Thereafter, the cerebral activity-metabolism relationship is analyzed through a review of the flux rates determined in rat brain under different cerebral activity status. More particularly, the relations between neuronal oxidative metabolism, glutamate-glutamine cycle, astrocytic oxidative metabolism and anaplerosis with cerebral activity are discussed. Some aspects concerning the reliability, the limitations and possible progress in brain metabolism modeling are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aurelli T, Di Cocco ME, Calvani M, Conti F (1997) The entry of [1–13C]glucose into biochemical pathways reveals a complex compartmentation and metabolic trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res 765:218–227

    Google Scholar 

  • Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-NMR spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

    PubMed  CAS  Google Scholar 

  • Bak LK, Sickmann HM, Schousboe A, Waagepetersen HS (2004) Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures. J Neurosci 79:88–96

    Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    PubMed  CAS  Google Scholar 

  • Bak LK, Waagepetersen HS, Melø TM, Schousboe A, Sonnewald U (2007) Complex glutamate labeling from [U-13C]glucose or [U-13C]lactate in co-cultures of cerebellar neurons and astrocytes. Neurochem Res 32:671–680

    PubMed  CAS  Google Scholar 

  • Balazs R, Haslam RJ (1965) Exchange transamination and the metabolism of glutamate in brain. Biochem J 94:131–141

    Google Scholar 

  • Berkich DA, Xu Y, LaNoue KF, Gruetter R, Hutson SM (2005) Evaluation of brain mitochondrial glutamate and α-ketoglutarate transport under physiological conditions. J Neurosci Res 79:106–113

    PubMed  CAS  Google Scholar 

  • Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85:3367–3377

    PubMed  CAS  Google Scholar 

  • Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism-VI Cerebral compartments of glutamic acid metabolism. J Neurochem 7:186–197

    CAS  Google Scholar 

  • Berl S, Takagaki G, Clarke D, Waelsch H (1962) Metabolic compartments in vivo: ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2569

    PubMed  CAS  Google Scholar 

  • Berl S, Nicklas WJ, Clarke DD (1970) Compartmentation of citric acid cycle metabolism in the brain: labelling of glutamate, glutamine, aspartate and GABA by several radioactive tracer metabolites. J Neurochem 17:1009–1015

    PubMed  CAS  Google Scholar 

  • Bouzier A-K, Quesson B, Valeins H, Canioni P, Merle M (1999) [1-13C]glucose metabolism in the tumoral and nontumoral cerebral tissue of a glioma-bearing rat. J Neurochem 72:2445–2455

    PubMed  CAS  Google Scholar 

  • Bouzier AK, Thiaudiere E, Biran M, Rouland R, Canioni P, Merle M (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J Neurochem 75:480–486

    PubMed  CAS  Google Scholar 

  • Brand A, Engelmann J, Leibfritz D (1992) A 13C NMR study on fluxes into the TCA cycle of neuronal and glial tumor cell lines and primary cells. Biochimie 74:941–948

    PubMed  CAS  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48:523–530

    PubMed  CAS  Google Scholar 

  • Chateil J-F, Biran M, Thiaudière E, Canioni P, Merle M (2001) Metabolism of [1-13C] and [2-13C]acetate in the hypoxic rat brain. Neurochem Int 38:399–407

    PubMed  CAS  Google Scholar 

  • Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (2000) Metabolism of [1-13C]glucose and [2-13C, 2-2CH3]acetate in the neuronal and glial compartments of the adult rat brain as detected by [13C, 2H] NMR spectroscopy. Neurochem Int 37:217–228

    PubMed  CAS  Google Scholar 

  • Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K (2001) Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-[(13)C] MRS and fMRI. Magn Reson Med 45:349–355

    PubMed  CAS  Google Scholar 

  • Chhina N, Kuestermann E, Halliday J, Simpson LJ, Macdonald IA, Bachelard HS, Morris P (2001) Measurement of human tricarboxylic acid cycle rates during visual activation by (13)C magnetic resonance spectroscopy. J Neurosci Res 66:737–746

    PubMed  CAS  Google Scholar 

  • Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23: 1263–1281

    PubMed  CAS  Google Scholar 

  • Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21:653–663

    Google Scholar 

  • Choi IY, Lei H, Gruetter R (2002) Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab 22:1343–1351

    PubMed  CAS  Google Scholar 

  • Cooper AJ (2001) Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev 7:280–306

    PubMed  CAS  Google Scholar 

  • Cruz F, Scott SR, Barroso I, Santisteban P, Cerdan S (1998) Ontogeny and cellular localisation of the pyruvate recycling system in rat brain. J Neurochem 70:2613–2619

    PubMed  CAS  Google Scholar 

  • Cruz F, Cerdan S (1999) Quantitative 13C NMR studies of metabolic compartmentation in the adult mammalian brain. NMR Biomed 12:454–462

    Google Scholar 

  • Cruz NF, Lasater A, Zielke HR, Dienel A (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92:934–947

    PubMed  CAS  Google Scholar 

  • De Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci USA 24:12700–12705

    Google Scholar 

  • Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab 10:170–179

    PubMed  CAS  Google Scholar 

  • Grill V, Bjorkman O, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32

    PubMed  CAS  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, Prichard JW (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem 63:1377–1385

    PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Kim S, Ugurbil K (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20:380–388

    PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    PubMed  CAS  Google Scholar 

  • Gruetter R, Adriany G, Choi IY, Henry P-G, Lei H, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Bakken IJ, Sande LM, White LR, Haraldseth O, Unsgard G, Aasly J, Sonnewald U (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20:389–398

    PubMed  CAS  Google Scholar 

  • Hassel B (2001a) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    PubMed  CAS  Google Scholar 

  • Hassel B (2001b) Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22:21–40

    Google Scholar 

  • Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose. An ex vivo 13C NMR study. J Neurochem 64:2773–2782

    PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids. J Neurochem 65:2227–2234

    PubMed  CAS  Google Scholar 

  • Hassel B, Brathe A (2000a) Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 20:327–336

    PubMed  CAS  Google Scholar 

  • Hassel B, Brathe A (2000b) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20:1342–1347

    PubMed  CAS  Google Scholar 

  • Henry P-G, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G (2002) Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1H-[13C] NMR spectroscopy. J Neurochem 82:857–866

    PubMed  CAS  Google Scholar 

  • Henry P-G, Oz G, Provencher S, Gruetter R (2003a) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16:400–412

    PubMed  CAS  Google Scholar 

  • Henry P-G, Tkac I, Gruetter R (2003b) 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn Reson Med 50:684–692

    PubMed  CAS  Google Scholar 

  • Henry P-G, Adriany G, Deelchand D, Gruetter R, Marjanska M, Oz G, Seaquist ER, Hestov A, Ugurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Mag Reson Imag 24:527–539

    CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    PubMed  CAS  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KB, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26:865–877

    PubMed  CAS  Google Scholar 

  • Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF (1998) Role of branched-chain aminotransferase isoenzymes and gabapentine in neurotransmitter metabolism. J Neurochem 71:863–874

    PubMed  CAS  Google Scholar 

  • Hutson SM, Sweatt AJ, LaNoue KF (2005) Branched-chain amino acid metabolism: implications for establishing safe intakes. J Nutr 135:1557S–1564S

    PubMed  CAS  Google Scholar 

  • Kalderon B, Gopher A, Lapidot A (1987) A quantitative analysis of the metabolic pathways of hepatic glucose synthesis in vivo with 13C-labeled substrates. FEBS Lett 213:209–214

    PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15  N NMR. J Neurochem 70:1304–1315

    PubMed  CAS  Google Scholar 

  • Kimmich GE, Roussie JA, Randles J (2002) Aspartate amino transferase isotope exchange reactions: implications for glutamate/glutamine shuttle hypothesis. Am J Physiol Cell Physiol 282:C1404–C1413

    PubMed  CAS  Google Scholar 

  • Kunnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]β-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    PubMed  CAS  Google Scholar 

  • Lapidot A, Gopher A (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J Biol Chem 269:27198–27208

    PubMed  CAS  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    PubMed  CAS  Google Scholar 

  • Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    PubMed  CAS  Google Scholar 

  • Malloy CR, Sherry AD, Jeffrey MH (1988) Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem 263:6964–6971

    PubMed  CAS  Google Scholar 

  • Mangia S, Tkac I, Gruetter R, Van de Moortele P-F, Maraviglia B, Ugurbil K (2006) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    PubMed  Google Scholar 

  • Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64:157–183

    PubMed  CAS  Google Scholar 

  • Martin M, Portais J-C, Labouesse J, Canioni P, Merle M (1993) [1-13C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- and 1H-NMR spectroscopy. Eur J Biochem 217:617–625

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    PubMed  CAS  Google Scholar 

  • Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12:434–447

    Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar K, Shulman RG, Novotny FJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    PubMed  CAS  Google Scholar 

  • Mason GF, Pan JW, Chu W-J, Newcomer BR, Zhang Y, Orr R, Hetherington HP (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 1H-[13C] magnetic resonance spectroscopy at 4.1 T. J Cereb Blood Flow Metab 19:1179–1188

    PubMed  CAS  Google Scholar 

  • Mason GF, Martin DL, Martin SB, Manor D, Sibson NR, Patel A, Rothman DL, Behar K (2001) Decrease in GABA synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD67 protein. Brain Res 914:81–91

    PubMed  CAS  Google Scholar 

  • Mason GF, Rothman DL (2004) Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo. Metab Engin 6:75–84

    CAS  Google Scholar 

  • Mason FM, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C]glucose. J Neurochem 100:73–86

    PubMed  CAS  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochodria from cortical synaptic terminals compared with mitochodria from prymary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36:451–459

    PubMed  CAS  Google Scholar 

  • McKenna MC, Waagepetersen HS, Shousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    PubMed  CAS  Google Scholar 

  • Melø TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a 13C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25:1254–1264

    PubMed  Google Scholar 

  • Merle M, Martin M, Villégier A, Canioni P (1996a) Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1-13C]glucose. Eur J Biochem 239:742–751

    PubMed  CAS  Google Scholar 

  • Merle M, Martin M, Villégier A, Canioni P (1996b) [1-13C]glucose metabolism in brain cells: isotopomer analysis of glutamine from cerebellar astrocytes and glutamate from granule cells. Dev Neurosci 18:460–468

    PubMed  CAS  Google Scholar 

  • Merle M, Bouzier-Sore AK, Canioni P (2002) Time-dependence of the contribution of pyruvate carboxylase versus pyruvate dehydrogenase to rat brain glutamine labelling from [1-13C]glucose metabolism. J Neurochem 82:47–57

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    PubMed  CAS  Google Scholar 

  • Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurones from cerebellum. J Neurosci Res 85:3318–3325

    PubMed  CAS  Google Scholar 

  • O’Neal RM, Koeppe RE (1966) Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J Neurochem 13:835–847

    PubMed  Google Scholar 

  • Öz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    PubMed  Google Scholar 

  • Pan JW, Stein DT, Telang F, Lee JH, Shen J, Brown P, Cline G, Mason GF, Shulman GI, Rothman DL, Hetherington HP (2000) Spectroscopic imaging of glutamate C4 turnover in human brain. Mag Reson Med 44:673–679

    CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 24:972–985

    PubMed  CAS  Google Scholar 

  • Patel AB, Chowdhury GMI, de Graaf RA, Rothman DL, Shulman RG, Behar KL (2005a) Cerebral pyruvate carboxylase flux is unaltered during bicuculline-seizures. J Neurosci Res 79: 128–138

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005b) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    PubMed  CAS  Google Scholar 

  • Pellerin L (2003) Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43:331–338

    PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti P (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    PubMed  Google Scholar 

  • Qu H, Eloqayli H, Unsgard G, Sonnewald U (2001) Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66:1127–1132

    PubMed  CAS  Google Scholar 

  • Ramos M, del Arco A, Pardo B, Martinez-Serrano A, Martinez-Morales JR, Kobayashi K, Yasuda T, Bogonez E, Bovolenta P, Saheki R, Satrustegui J (2003) Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Dev Brain Res 143:33–46

    CAS  Google Scholar 

  • Sakai R, Cohen DM, Henry JF, Burrin DG, Reeds PJ (2004) Leucine-nitrogen metabolism in the brain of conscious rats: its role as a nitrogen carrier in glutamate synthesis in glial and neuronal metabolic compartements. J Neurochem 88:612–622

    PubMed  CAS  Google Scholar 

  • Serres S, Bouyer J-J, Bezançon E, Canioni P, Merle M (2003) Involvement of brain lactate in brain metabolism. NMR Biomed 16:430–439

    PubMed  CAS  Google Scholar 

  • Serres S, Bezançon E, Franconi J-M, Merle M (2004) Ex vivo analysis of lactate and glucose metabolism in the rat brain under different states of depressed activity. J Biol Chem 279: 47881–47889

    PubMed  CAS  Google Scholar 

  • Serres S, Bezançon E, Franconi J-M, Merle M (2005) Ex vivo NMR study of lactate metabolism in rat brain under various depressed states. J Neurosci Res 79:19–25

    PubMed  CAS  Google Scholar 

  • Serres S, Bezançon E, Franconi J-M, Merle M (2007) Brain pyruvate recycling and peripheral metabolism: a NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 101:1428–1440

    PubMed  CAS  Google Scholar 

  • Serres S, Raffard G, Franconi J-M, Merle M (2008) Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J Cereb Blood Flow Metab (4):712–724

    PubMed  CAS  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    PubMed  CAS  Google Scholar 

  • Shank RP, Leo GC, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J Neurochem 61:315–323

    PubMed  CAS  Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OAC, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    PubMed  CAS  Google Scholar 

  • Sherry AD, Jeffrey FMH, Malloy CR (2004) Analytical solutions for 13C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metab Engin 6:12–24

    CAS  Google Scholar 

  • Shestov AA, Valette J, Ugurbil K, Henry P-G (2007) On the reliability of 13C metabolic modeling with two-compartments neuronal-glial models. J Neurosci Res 85:3294–3303

    PubMed  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: nurochemical basis of functional imaging. Proc Natl Acad Sci USA 98:6417–6422

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    PubMed  CAS  Google Scholar 

  • Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG (2001) In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. Proc Natl Acad Sci USA 76:975–989

    CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C5]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    PubMed  CAS  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. Freeman, San Francisco

    Google Scholar 

  • Tsukada Y (1966) Amino acid metabolism and its relation to brain functions. Prog Brain Res 21:268–291

    PubMed  CAS  Google Scholar 

  • Tyson RL, Gallagher C, Sutherland GR (2003) 13C-labeled substrates and the cerebral metabolic compartmentalization of acetate and lactate. Brain Res 992:43–52

    PubMed  CAS  Google Scholar 

  • Van den Berg CJ, Krzalic LJ, Mela P, Waelsch H (1969) Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J 113:281–290

    PubMed  Google Scholar 

  • Van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    PubMed  Google Scholar 

  • Vogel R, Hamprecht B, Wiesinger H (1998a) Malic enzyme isoforms in astrocytes: comparative study on activities in rat brain tissue and astrogia-rich primary cultures. Neurosci Lett 247: 123–126

    PubMed  CAS  Google Scholar 

  • Vogel R, Jennemann G, Seitz J, Wiesinger H, Hamprecht B (1998b) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain. J Neurochem 71:844–852

    PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • Yu ACH, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    PubMed  CAS  Google Scholar 

  • Yu X, Alpert NM, Lewandowski ED (1997) Modeling enrichment kinetics from dynamic 13C-NMR spectra: theoretical analysis and practical considerations. Am J Physiol 272:C2037–C2048

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Shousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nelson D, Nissim I, Erecińska M (1996) Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes. J Neurochem 66:2136–2145

    PubMed  CAS  Google Scholar 

  • Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopy study on the metabolic fate of [3-13C]alanine in astrocytes, neurons, and cocultures: implications for glial-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    PubMed  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D (2003) Regulation of glial metabolism studied by 13C-NMR. NMR Biomed 16:370–399

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Merle Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merle, M., Franconi, JM. (2012). Brain Metabolic Compartmentalization, Metabolism Modeling, and Cerebral Activity-Metabolism Relationship. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_33

Download citation

Publish with us

Policies and ethics