Skip to main content

Mitochondria in Neurodegeneration

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

  • 1573 Accesses

Abstract

In neurodegenerative diseases, particular parts of the brain, spinal cord, or peripheral nerves functionally fail and the neurons of the dysfunctional region die. Neuroanatomically localizable functional impairment and neurodegeneration associate with recognizable clinical syndromes. Mitochondrial dysfunction is found in numerous neurodegenerative diseases and justifies a “neurodegenerative mitochondriopathy” classification system. The role mitochondrial dysfunction plays in the etiology, pathophysiology, and histopathology of the neurodegenerative mitochondriopathies is not entirely clear at this time, but in different diseases mitochondria may represent a final common pathway, an intermediate step, or even primary driver of neurodegeneration. Mitochondria sit at the nexus of various hypotheses that attempt to explain particular neurodegenerative diseases, and are a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani MG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 16:41–54

    Google Scholar 

  • Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-arquez A, Nunes V (1997) Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Brain Res Mol Brain Res 52:284–289

    PubMed  CAS  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    PubMed  CAS  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JT, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3: 1301–1306

    PubMed  CAS  Google Scholar 

  • Bindoff LA, Birch-Machin M, Cartlidge NEF, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49

    PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K  +  channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    PubMed  CAS  Google Scholar 

  • Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61:2322–2325

    PubMed  CAS  Google Scholar 

  • Brand FN, Kiely DK, Kannel WB, Myers RH (1992) Family patterns of coronary heart disease mortality: the Framingham longevity study. J Clin Epidemiol 45:169–174

    PubMed  CAS  Google Scholar 

  • Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546

    PubMed  CAS  Google Scholar 

  • Canevari L, Clark JB, Bates TE (1999) β-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457:131–134

    PubMed  CAS  Google Scholar 

  • Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439–1441

    PubMed  CAS  Google Scholar 

  • Casperson C, Wang N, Yao J, Sosunov A, Chen X, Lustader JW, Xu WH, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    Google Scholar 

  • Chang S, RanMa T, Miranda RD et al (2005) Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci USA 102:18694–18699

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    PubMed  CAS  Google Scholar 

  • Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 25:672–679

    PubMed  CAS  Google Scholar 

  • Cui L, Jeong H, Borovecki F, Parkhurst CA, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    PubMed  CAS  Google Scholar 

  • Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145:1271–1280

    PubMed  CAS  Google Scholar 

  • de la Monte SM, Luong T, Neely TR, Robinson D, Wands JR (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab Invest 80:1323–1335

    PubMed  Google Scholar 

  • Devi L, Prabhy BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    PubMed  CAS  Google Scholar 

  • Diana A, Simic G, Sinforiani E, Orru N, Pichiri G, Bono G (2008) Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid(1-42) peptide. Coll Antropol 32:51–58

    PubMed  CAS  Google Scholar 

  • Eckert A, Schulz KL, Rhein V, Götz J (2010) Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol Neurobiol 41:107–114, PMID: 20217279

    PubMed  CAS  Google Scholar 

  • Edland SD, Silverman JM, Peskind ER et al (1996) Increased risk of dementia in mothers of Alzheimer’s disease cases: Evidence for maternal inheritance. Neurology 47:254–256

    PubMed  CAS  Google Scholar 

  • Esteves ARF, Domingues AF, Ferreira IL, Januário C, Swerdlow RH, Oliveira CR, Cardoso SM (2008) Mitochondrial dysfunction occurs in Parkinson’s disease cybrids containing an NT2 neuron-like nuclear background. Mitochondrion 8:219–228

    PubMed  CAS  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ et al (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262:2551–2556

    PubMed  CAS  Google Scholar 

  • Finkel T (2001) Reactive oxygen species and signal transduction. IUBMB Life 52:3–6

    PubMed  CAS  Google Scholar 

  • Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A, Bellio N, Lenzi P, Modugno N, Siciliano G, Isidoro C, Murri L, Ruggieri S, Paparelli A (2008) Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 105: 2052–2057

    PubMed  CAS  Google Scholar 

  • Friede RI (1965) Enzyme histochemical studies of senile plaques. J Neuropathol Exp Neurol 24:477–491

    CAS  Google Scholar 

  • Fujita K, Yamauchi M, Shibayama K et al (1996) Decreased cytochrome oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. J Neurosci Res 45:276–281

    PubMed  CAS  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    PubMed  CAS  Google Scholar 

  • Greene JG, Porter RH, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J Neurochem 61:1151–1154

    PubMed  CAS  Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    PubMed  CAS  Google Scholar 

  • Hansson CA, Frykman S, Farmery MR et al (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    PubMed  CAS  Google Scholar 

  • Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 21: 1151–1155

    Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256: 184–185

    PubMed  CAS  Google Scholar 

  • Hervias I, Beal MF, Manfredi G (2006) Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 33:598–608

    PubMed  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21: 3017–3023

    PubMed  CAS  Google Scholar 

  • Holt IJ, Harding AD, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    PubMed  CAS  Google Scholar 

  • Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC (1993) Risk factors for Parkinson’s disease. Neurology 43:1693–1697

    PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Johns DR, Lessell S, Miller NR (1991) Molecularly confirmed Leber’s hereditary optic neuropathy. Neurology 41(suppl 1):347

    Google Scholar 

  • Khan SM, Bennett JP Jr (2004) Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr 36:387–393

    PubMed  CAS  Google Scholar 

  • Khan SM, Smigrodzki RM, Swerdlow RH (2007) Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 292:C658–C669

    PubMed  CAS  Google Scholar 

  • Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16:345–351

    PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    PubMed  CAS  Google Scholar 

  • Lee HJ, Shin SY, Choi C, Lee YU, Lee SJ (2002) Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 277(7):5411–5417

    PubMed  CAS  Google Scholar 

  • Lestienne P, Ponsot F (1988) Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1:885

    PubMed  CAS  Google Scholar 

  • Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41:1776–1804

    PubMed  CAS  Google Scholar 

  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    PubMed  CAS  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Javoy-Agid F et al (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336:749

    PubMed  CAS  Google Scholar 

  • Moore DJ, Dawson TM (2008) Value of genetic models in understanding the cause and mechanisms of Parkinson’s disease. Curr Neurol Neurosci Rep 8:288–296

    PubMed  CAS  Google Scholar 

  • Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    PubMed  CAS  Google Scholar 

  • Mosconi L, Brys M, Switalski R, Mistur R, Glodzik L, Pirraglia E, Tsui W, De Santi S, de Leon MJ (2007) Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA 104:19067–19072

    PubMed  CAS  Google Scholar 

  • Mytilineou C, Werner P, Molinari S et al (1994) Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. J Neural Transm Park Dis Dement Sect 8:223–228

    PubMed  CAS  Google Scholar 

  • Newman NJ (1993) Leber’s hereditary optic neuropathy. Arch Neurol 50:540–548

    PubMed  CAS  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 36:2503–2508

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Rao KV (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50:983–997

    PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    PubMed  CAS  Google Scholar 

  • Parker WD Jr, Parks JK (2005) Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun 326:667–669

    PubMed  CAS  Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Electron transport chain abnormalities in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    PubMed  Google Scholar 

  • Parker WD Jr, Boyson SJ, Luder AS, Parks JK (1990a) Evidence for a defect in NADH:ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40:231–1234

    Google Scholar 

  • Parker WD, Filley CM, Parks JK (1990b) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40:1302–1303

    PubMed  Google Scholar 

  • Parker WD, Parks JK, Swerdlow RH (2008) Complex I Deficiency in Parkinson’s Disease Brain: Studies on Frontal Cortex. Brain Res 1189:215–218

    PubMed  CAS  Google Scholar 

  • Pereira C, Santos MS, Oliveira C (1998) Mitochondrial function impairment induced by amyloid beta-peptide on PC12 cells. NeuroReport 9:1749–1755

    PubMed  CAS  Google Scholar 

  • Petit PX, Zamzami N, Vayssiere JL et al (1997) Implication of mitochondria in apoptosis. Mol Cell Biochem 174:185–188

    PubMed  CAS  Google Scholar 

  • Quastel JH (1932) Biochemistry and mental disorders. Lancet 2:1417–1419

    Google Scholar 

  • Rajput AH, Uitti RH, Stern W, Laverty W, O’Donnell K, O’Donnell D et al (1987) Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 14:414–418

    PubMed  CAS  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    PubMed  CAS  Google Scholar 

  • Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 13:1225–1240

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. NEJM 334:752–758

    PubMed  CAS  Google Scholar 

  • Scaglia F, Northrop JL, Kaufmann P, Englestad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, De Vivo DC (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66:324–330

    Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1289

    Google Scholar 

  • Schieke SM, Finkel T (2006) Mitochondrial signaling, TOR, and life span. Biol Chem 387: 1357–1361

    PubMed  CAS  Google Scholar 

  • Scholte HR (1988) The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 20: 161–191

    PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    PubMed  CAS  Google Scholar 

  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    PubMed  CAS  Google Scholar 

  • Shoffner JM, Lott MT, Lezza AMS et al (1990) Myoclonic epilepsy and ragged red fibers disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61:931–937

    PubMed  CAS  Google Scholar 

  • Small GW, Mazziotta JC, Collins MT et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947

    PubMed  CAS  Google Scholar 

  • Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25:1273–1281

    PubMed  CAS  Google Scholar 

  • Swerdlow RH (2000) Role of mitochondria in Parkinson’s disease. In: Chesselet MF (ed) Molecular mechanisms of neurodegenerative diseases. Humana Press, New Jersey, pp 233–270

    Google Scholar 

  • Swerdlow RH (2007a) Treating neurodegeneration by modifying mitochondria: potential solutions to a “complex” problem. Antioxid Redox Signal 9:1591–1603

    PubMed  CAS  Google Scholar 

  • Swerdlow RH (2007b) Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging? Neurobiol Aging 28:1465–1480

    PubMed  Google Scholar 

  • Swerdlow RH (2007c) Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 85:3416–3428

    PubMed  CAS  Google Scholar 

  • Swerdlow RH (2007d) Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2:347–359

    PubMed  CAS  Google Scholar 

  • Swerdlow RH (2009) The neurodegenerative mitochondriopathies. JAD 17:737–751

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Khan S (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypoth 63:8–20

    CAS  Google Scholar 

  • Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp Neurol 218:308–315

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Kish SJ (2002) Mitochondria in Alzheimer’s disease. Int Rev Neurobiol 53:341–385

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Mitochondrial DNA (2002) and dysfunction in neurodegenerative diseases. Arch Path Lab Med 126:271–280

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Davis RE, Parker WD (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–670

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Cassarino DS et al (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49:918–925

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Miller SW, Parks JK, Sheehan JP, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP, Juel VC, Phillips LH, Trimmer PA, Pattee G, Tuttle JB, Davis RE, Parker WD (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 153:135–142

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Pattee G, Parker WD Jr (2000) Role of mitochondria in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:185–190

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parker WD, Currie LJ, Bennett JP Jr, Harrison MB, Trugman JM, Wooten GF (2001) Gender ratio differences between Parkinson’s disease patients and their affected parents. Parkinsonism Relat Disord 7:47–51

    Google Scholar 

  • Swerdlow RH, Weaver B, Grawey A, Wenger C, Freed E, Worrall BB (2006) Complex I polymorphisms, bigenomic heterogeneity, and family history in Virginians with Parkinson’s disease. J Neurol Sci 247:224–230

    PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Nakagwa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757:1297–1300

    PubMed  CAS  Google Scholar 

  • van der Walt JM, Nicodemus KK, Martin ER et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72:804–811

    PubMed  Google Scholar 

  • Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE, Schubert W, Kunz WS (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123:1339–1348

    PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT et al (1988) Mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Science 242:1427–1430

    PubMed  CAS  Google Scholar 

  • Wiedemann FR, Winkler K, Kuznetsov AV et al (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156:65–72

    PubMed  CAS  Google Scholar 

  • Wisniewski H, Terry RD, Hirano A (1970) Neurofibrillary pathology. N Neuropathol Exp Neurol 29:163–176

    CAS  Google Scholar 

  • Wolf PA, Beiser A, Au R, Auerbach S, DeCarli C (2005) Parental occurrence of dementia linked to lower cognitive function in the framingham offspring study. Neurology 64(Suppl 1): A267–A268

    Google Scholar 

  • Wong PC, Pardo CA, Borchelt DR et al (1995) An adverse property of familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    PubMed  CAS  Google Scholar 

  • Wooten FG, Currie LJ, Bennett JP, Trugman JM, Harrison MB, Parker WD Jr (1997) Maternal inheritance in Parkinson’s disease. Ann Neurol 41:265–268

    PubMed  CAS  Google Scholar 

  • Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:14670–14675

    PubMed  CAS  Google Scholar 

  • Zeviani M, Moraes CT, DiMauro S et al (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38:1339–1346

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell H. Swerdlow M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Swerdlow, R.H. (2012). Mitochondria in Neurodegeneration. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_30

Download citation

Publish with us

Policies and ethics