Skip to main content

The Ketogenic Diet and Brain Metabolism

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

  • 1659 Accesses

Abstract

Glucose ordinarily is the major brain fuel. However, the consumption of a diet high in fat evokes a brisk ketonemia (1–2 mmol/l) and provides brain with substrates (3-OH-butyrate and acetoacetate) that can furnish almost half of cerebral energy requirements. Such a diet also confers a potent anti-epileptic effect, even in patients whose epilepsy has proved refractory to anti-convulsant drugs. The precise basis of the therapeutic effect is not clear, but a ketogenic diet alters brain metabolism of many compounds, including the handling of neurotransmitter amino acids such as glutamate, aspartate, glutamine and GABA. This review summarizes some of these changes and considers how such adaptations might attenuate or even prevent a seizure diathesis.

Supported by grants HD269711, RR00240, U54RR019453, U54RR023567, DK047870 from NIH

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Mudallal AS, LaManna JC, Lust WD, Harik SI (1996) Diet-induced ketosis does not cause cerebral acidosis. Epilepsia 37:258–261

    PubMed  CAS  Google Scholar 

  • Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318

    PubMed  CAS  Google Scholar 

  • Battaglioli G, Martin DL (1990) Stimulation of synaptosomal γ-aminobutyric acid synthesis by glutamate and glutamine. J Neurochem 54:1179–1187

    PubMed  CAS  Google Scholar 

  • Bergqvist AG, Schall JI, Gallagher PR, Cnaan A, Stallings VA (2005) Fasting versus gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. Epilepsia 46:1810–1819

    PubMed  CAS  Google Scholar 

  • Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2569

    PubMed  CAS  Google Scholar 

  • Bixel MG, Hutson SM, Hamprecht B (1997) Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45:685–694

    PubMed  CAS  Google Scholar 

  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci 96:12079–12084

    PubMed  CAS  Google Scholar 

  • Bough KJ, Schwartzkroin PA, Rho JM (2003) Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia 44:752–760

    PubMed  Google Scholar 

  • Bravata DM, Sanders L, Huang J, Krumholz HM, Olkin I, Gardner CD, Bravata DM (2003) Efficacy and safety of low-carbohydrate diets: a systematic review. JAMA 289:1837–1850

    PubMed  CAS  Google Scholar 

  • Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    PubMed  CAS  Google Scholar 

  • Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25:2429–2433

    PubMed  CAS  Google Scholar 

  • Cahill GF Jr (1998) Survival in starvation. Am J Clin Nutr 68:1–2

    PubMed  CAS  Google Scholar 

  • Camfield CR, Camfield CS (1996) Antiepileptic drug therapy: when is epilepsy truly intractable? Epilepsia 37:S60–S65

    PubMed  Google Scholar 

  • Carlson H, Ronne-Engstrum E, Ungerstedt U, Hillered L (1992) Seizure-related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett 140:30–32

    PubMed  CAS  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13  C2]acetate as detected by in vivo and in vitro 13  C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Reimber RJ, Edward RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157:349–355

    PubMed  CAS  Google Scholar 

  • Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, Bondy CA (2003) A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 144:2676–2682

    PubMed  CAS  Google Scholar 

  • Chiry O, Pellerin L, Monnet-Tschudi F, Fishbein WN, Merezhinskaya N, Magistretti PJ, Clarke S (2006) Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Res 1070:65–70

    PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 637–669

    Google Scholar 

  • Cooper AJL, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13  N-labelled ammonia in rat brain. J Biol Chem 254:4982–4992

    PubMed  CAS  Google Scholar 

  • Cunnane SC, Musa K, Ryan MA, Whiting S, Fraser DD (2002) Potential role of polyunsaturates in seizure protection achieved with the ketogenic diet. Prostaglandins Leukot Essent Fatty Acids 67:131–135

    PubMed  CAS  Google Scholar 

  • Dahlin M, Elfving A, Ungerstedt U, Amark P (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64:115–125

    PubMed  CAS  Google Scholar 

  • Daikhin Y, Yudkoff M (1998) Ketone bodies and brain glutamate and GABA metabolism. Dev Neurosci 20:358–364

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • DeDeyn PP, Marescau B, MacDonald RL (1990) Epilepsy and the GABA-hypothesis: a brief review and some samples. Acta Neurol Belg 90:65–81

    CAS  Google Scholar 

  • DeVivo DC, Leckie MP, Ferrendelli JS, McDougal DB Jr (1978) Chronic ketosis and cerebral metabolism. Ann Neurol 3:331–337

    PubMed  CAS  Google Scholar 

  • Do KQ, Klancnik J, Gahwiler BH et al (1991) Release of EAA: animal studies and epileptic foci studies in humans. In: Meldrum BS, Moroni F, Simon RP (eds) Excitatory Amino Acids. Raven, New York, pp 677–685

    Google Scholar 

  • Dombrowski GJ Jr, Swiatek KR, Chao K-L (1989) Lactate, 3-hydroxybutyrate and glucose as substrates for early postnatal rat brain. Neurochem Res 14:667–675

    PubMed  CAS  Google Scholar 

  • Eagles DA, Boyd SJ, Kotak A, Allan F (2003) Calorie restriction of a high-carbohydrate diet elevates the threshold of PTZ-induced seizures to values equal to those seen with a ketogenic diet. Epilepsy Res 54:41–52

    PubMed  CAS  Google Scholar 

  • Erecinska M, Dagani F (1990) Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+ and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95:591–616

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Progr Neurobiol 35:245–296

    CAS  Google Scholar 

  • Erecinska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium and ketone bodies. J Neurochem 67:2325–2334

    PubMed  CAS  Google Scholar 

  • Escartin C, Valette J, Lebon V, Bonvento G (2006) Neuron–astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR Spectroscopy. J Neurochem 99:393–401

    PubMed  CAS  Google Scholar 

  • Felig P, Pozefsk T, Marlis E, Cahill GF (1970) Alanine: key role in gluconeogenesis. Science 167:1003–1004

    PubMed  CAS  Google Scholar 

  • Fleck MW, Henze DA, Barrionuevo G, Palmer AM (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955

    PubMed  CAS  Google Scholar 

  • Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E (2006) The ketogenic diet: From molecular mechanisms to clinical effects. Epilepsy Res 68:145–180

    PubMed  CAS  Google Scholar 

  • Freeman JM, Vining EP, Pillas DJ et al (1998) The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363

    PubMed  CAS  Google Scholar 

  • Fuehrlein BS, Rutenberg MS, Silver JN, Warren MW, Theriaque DW, Duncan GE, Stacpoole PW, Brantly ML (2004) Differential metabolic effects of saturated versus polyunsaturated fats in ketogenic diets. J Clin Endocrinol Metab 89:1641–1645

    PubMed  CAS  Google Scholar 

  • Fukao T, Song XQ, Mitchell GA, Yamaguchi S, Sukegawa K, Orii T, Kondo N (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A. CoA.:3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502

    PubMed  CAS  Google Scholar 

  • Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45:233–238

    PubMed  CAS  Google Scholar 

  • Gerasimov MR, Ferrieri RA, Pareto D, Logan J, Alexoff D, Ding YS (2005) Synthesis and evaluation of inhaled [11  C]butane and intravenously injected [11  C]acetone as potential radiotracers for studying inhalant abuse. Nucl Med Biol 32:201–208

    PubMed  CAS  Google Scholar 

  • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273:E207–E213

    PubMed  CAS  Google Scholar 

  • Gould EM, Curto KA, Craig CR, Fleming WW, Taylor DA (1995) The role of GABA-A receptors in the subsensitivity of Purkinje neurons to GABA in genetic epilepsy prone rats. Brain Res 698:62–68

    PubMed  CAS  Google Scholar 

  • Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42:1371–1378

    PubMed  CAS  Google Scholar 

  • Grill V, Björkhem M, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32

    PubMed  CAS  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Vina JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Westergaard N, Yudkoff M, Schousboe A (1992) Neuronal-astrocytic interactions in metabolism of transmitter amino acids of the glutamate family. In: Schousboe A, Diemer NH, Kofod H (eds) Drug Research Related to Neuroactive Amino Acids, Alfred Benzon Symposium 32. Munksgaard, Copenhagen, pp 30–48

    Google Scholar 

  • Hertz L, Peng L, Dienel GA 2007 Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab [Epub ahead of print]

    Google Scholar 

  • Hovanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Makela R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94:4143–4148

    Google Scholar 

  • Huang Y, Zielke HR, Tildon JT, Zielke CL, Baab PJ (1996) Elevation of amino acids in the interstitial space of the rat brain following infusion of large neutral amino and keto acids by microdialysis: leucine infusion. Dev Neurosci 18:415–419

    PubMed  Google Scholar 

  • Hutson SM, Wallin R, Hall TR (1992) Identification of mitochondrial branched chain aminotransferase and its isoforms in rat tissues. J Biol Chem 267:15681–15686

    PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15  N NMR. J Neurochem 70:1304–1315

    PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD (2004) Quantitative determination of extracellular glutamine concentration in rat brain, and its elevation in vivo by system A transport inhibitor, alpha-(methylamino)isobutyrate. J Neurochem 90:203–210

    PubMed  CAS  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 27:476–483

    Google Scholar 

  • Koper JW, Lopes-Cardozo M, Van Golde LM (1981) Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo. Biochem Biophys Acta 666:411–417

    PubMed  CAS  Google Scholar 

  • Kossoff EH, Pyzik PL, McGrogan JR, Vining EP, Freeman JM (2002) Efficacy of the ketogenic diet for infantile spasms. Pediatrics 109:780–783

    PubMed  Google Scholar 

  • Kossoff EH, Krauss GL, McGrogan JR, Freeman JM (2003) Efficacy of the Atkins diet as therapy for intractable epilepsy. Neurology 61:1789–1791

    PubMed  Google Scholar 

  • Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM (2005) Tuberous sclerosis complex and the ketogenic diet. Epilepsia 46:1684–1686

    PubMed  Google Scholar 

  • Kwiterovich PO Jr, Vining EP, Pyzik P, Skolasky R Jr, Freeman JM (2003) Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 290:912–920

    PubMed  CAS  Google Scholar 

  • Lapidot A, Haber S (2002) Effect of endogenous β-hydroxybutyrate on brain glucose metabolism in fetuses of diabetic rabbits, studied by 13 C magnetic resonance spectroscopy. Devel Brain Res 135:87–99

    CAS  Google Scholar 

  • Lasley SM, Yan QS (1994) Diminished potassium-stimulated GABA release in vivo in genetically epilepsy-prone rats. Neurosci Lett 175:145–148

    PubMed  CAS  Google Scholar 

  • Lefevre F, Aronson A (2000) Ketogenic diet for the treatment of refractory epilepsy in children: a systematic review of efficacy. Pediatrics 105:E46

    PubMed  CAS  Google Scholar 

  • Likhodii SS, Serbanescu I, Cortez MA, Murphy P, Snead OC 3rd, Burnham WM (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol 54:219–226

    PubMed  CAS  Google Scholar 

  • Lopes-Cardozo M, Koper JW, Klein W, Van Golde LM (1984) Acetoacetate is a cholesterogenic precursor for myelinating rat brain and spinal cord. Incorporation of label from [3-14 C]acetoacetate, [14 C]glucose and 3H2O. Biochem Biophys Acta 794:350–352

    PubMed  CAS  Google Scholar 

  • Loscher W, Swark WS (1985) Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Res 339:146–150

    PubMed  CAS  Google Scholar 

  • Mady MA, Mc Kossoff EH, Gregor AL, Wheless JW, Pyzik PL, Freeman JM (2003) The ketogenic diet: adolescents can do it, too. Epilepsia 44:847–851

    PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    PubMed  CAS  Google Scholar 

  • Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN (2004) Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab 1:1–11

    Google Scholar 

  • Martin D, Bustos GA, Bowe MA, Bray SD, Nadler JV (1991) Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area. J Neurochem 56:1647–1655

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    PubMed  CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    PubMed  CAS  Google Scholar 

  • Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Comm 304:539–549

    PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: Differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:S14–S23

    PubMed  CAS  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    PubMed  CAS  Google Scholar 

  • Melo TM, Nehlig A, Sonnewald U (2006) Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem Int 48:498–507

    PubMed  CAS  Google Scholar 

  • Neal EG, Schwartz RH, Lawson MS, Edward N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506

    PubMed  Google Scholar 

  • Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Progr Neurobiol 40:163–221

    CAS  Google Scholar 

  • Noh HS, Kim DW, Cho GJ, Choi WS, Kang SS (2006) Increased nitric oxide caused by the ketogenic diet reduces the onset time of kainic acid-induced seizures in ICR mice. Brain Res 1075:193–200

    PubMed  CAS  Google Scholar 

  • Nordli DR Jr, Kuroda MM, Carroll J, Koenigsberger DY, Hirsch LJ, Bruner HJ, Seidel WT, De Vivo DC (2001) Experience with the ketogenic diet in infants. Pediatrics 108:129–133

    PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    PubMed  CAS  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    PubMed  Google Scholar 

  • O’Kane RL, Vina JR, Simpson I, Hawkins RA (2004) Na  +  −dependent neutral amino acid ­transporters A, ASC, and N of the blood-brain barrier: mechanisms for neutral amino acid removal. Am J Physiol Endocrinol Metab 287:E622–E629

    PubMed  Google Scholar 

  • Olney JW (2003) Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol 3:101–109

    PubMed  CAS  Google Scholar 

  • Olsen RW, Avoli M (1997) GABA and epileptogenesis. Epilepsia 38:399–407

    PubMed  CAS  Google Scholar 

  • Olstad E, Qu H, Sonnewald U 2006 Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. J Cereb Blood Flow Metab [Epub ahead of print]

    Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    PubMed  CAS  Google Scholar 

  • Pan JW, Bebin EM, Chu WJ, Hetherington HP (1999) Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 40:703–707

    PubMed  CAS  Google Scholar 

  • Patel AJ, Balazs R, Richter D (1970) Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain. Nature 226:1160–1161

    PubMed  CAS  Google Scholar 

  • Patel AJ, Johnson AL, Balazs R (1974) Metabolic compartmentation of glutamate associated with the formation of γ-aminobutyrate. J Neurochem 23:1271–1279

    PubMed  CAS  Google Scholar 

  • Paulsen RE, Fonnum F (1989) Role of glial cells for the basal and Ca2+-dependent K+-evoked release of transmitter amino acids investigated by microdialysis. J Neurochem 52:1823–1829

    PubMed  CAS  Google Scholar 

  • Peng L, Hertz L (1993) Potassium-induced stimulation of oxidative metabolism of glucose in cultures of intact cerebellar granule cells but not in corresponding cells with dendritic degeneration. Brain Res 629:331–334

    PubMed  CAS  Google Scholar 

  • Petroff OA, Rothman D, Behar KL, Mattson RH (1996) Low brain GABA level is associated with poor seizure control. Ann Neurol 40:908–911

    PubMed  CAS  Google Scholar 

  • Petroff OA (2002) GABA and glutamate in the human brain. Neuroscientist 8:562–573

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66:899–908

    PubMed  CAS  Google Scholar 

  • Porter TG, Martin DL (1988) Stability and activation of glutamate apodecarboxylase from pig brain. J Neurochem 51:1886–1891

    PubMed  CAS  Google Scholar 

  • Prins ML, Lee SM, Fujima LS, Hovda DA (2004) Increased cerebral uptake and oxidation of exogenous bHB improves ATP following traumatic brain injury in adult rats J. Neurochem 90:666–672

    CAS  Google Scholar 

  • Raiteri M, Marchi M, Costi A, Volpe G (1990) Endogenous aspartate release in the rat hippocampus inhibited by M2 “cardiac” muscarinic receptors. Eur J Pharmacol 177:181–187

    PubMed  CAS  Google Scholar 

  • Ratnakumari L, Murthy CRK (1989) Activities of pyruvate dehydrogenase, enzymes of citric acid cycle, and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats. Neurochem Res 14:221–228

    PubMed  CAS  Google Scholar 

  • Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    PubMed  CAS  Google Scholar 

  • Scheppach W, Pomare EW, Elia M, Cummings JH (1991) The contribution of the large intestine to blood acetate in man. Clin Sci 80:177–182

    PubMed  CAS  Google Scholar 

  • Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8:221–225

    PubMed  CAS  Google Scholar 

  • Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39

    PubMed  CAS  Google Scholar 

  • Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53:91–101

    PubMed  CAS  Google Scholar 

  • Shank RP, Aprison MH (1977) Present status and significance of the glutamine cycle in neural tissues. Life Sci 28:837–842

    Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    PubMed  CAS  Google Scholar 

  • Siesjo BK (1997) Brain Energy Metabolism. Wiley, New York

    Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13  C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Schousboe A, Qu H, Waagepetersen HS (2004) Intracellular metabolic compartmentation assessed by 13 C magnetic resonance spectroscopy. Neurochem Int 45:305–310

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen J, Ottersen OP (1986) Antibodies against amino acid neurotrnasmitters. In: Paunula P, Paivarinta H, Soinila S (eds) Neurohistochemistry: Modern Methods and Applications. New York, Alan R. Liss, New York, pp 107–136

    Google Scholar 

  • Sullivan PG, Dube C, Dorenbos K, Steward O, Baram TZ (2003) Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 53:711–717

    PubMed  CAS  Google Scholar 

  • Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580

    PubMed  CAS  Google Scholar 

  • Swink TD, Vining EP, Freeman JM, Freeman JM (1997) The ketogenic diet. Adv Pediatr 44:297–329

    PubMed  CAS  Google Scholar 

  • Szot P, Weinshenker D, Rho JM, Storey TW, Schwartzkroin PA (2001) Norepinephrine is required for the anticonvulsant effect of the ketogenic diet. Brain Res Dev Brain Res 129:211–214

    PubMed  CAS  Google Scholar 

  • Takahashi M, Billups B, Rossi D, Sarantis M, Hamann M, Attwell D (1997) The role of glutamate transporters in glutamate homeostasis in the brain. J Exper Biol 200:401–409

    CAS  Google Scholar 

  • Thiele EA (2003) Assessing the efficacy of antiepileptic treatments: the ketogenic diet. Epilepsia 44:26–29

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Schiro JA (1986) Beta-hydroxybutyrate reverses insulin-induced hypoglycemic coma in suckling-weanling mice despite low blood and brain glucose levels. Metab Brain Dis 1:63–82

    PubMed  CAS  Google Scholar 

  • Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901

    PubMed  CAS  Google Scholar 

  • Vamecq J, Vallee L, Lesage F, Gressens P, Stables JP (2005) Antiepileptic popular ketogenic diet: emerging twists in an ancient story. Prog Neurobiol 75:1–28

    PubMed  CAS  Google Scholar 

  • Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247

    PubMed  CAS  Google Scholar 

  • Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70:309–319

    PubMed  CAS  Google Scholar 

  • Vining EP (1999) Clinical efficacy of the ketogenic diet. Epilepsy Res 37:181–190

    PubMed  CAS  Google Scholar 

  • Vining EPG, Pyzik P, McGrogan J, Hladky H, Anand A, Kriegler S, Freeman JM (2002) Growth of children on the ketogenic diet. Dev Med Child Neurol 44:796–802

    PubMed  Google Scholar 

  • Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13  C-NMR spectroscopy. Dev Neurosci 20:310–320

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000a) Compartmentation of TCA cycle metabolism in cultured neocortical neurons revealed by 13  C MR spectroscopy. Neurochem Int 36:349–358

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000b) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A (2003) Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: functional implications. Neuroscientist 9:398–403

    PubMed  CAS  Google Scholar 

  • Wang ZJ, Bergqvist C, Hunter JV, Jin D, Wang DJ, Wehrli S, Zimmerman RA (2003) In vivo measurement of brain metabolites using two-dimensional double-quantum MR spectroscopy-exploration of GABA levels in a ketogenic diet. Magn Reson Med 49:615–619

    PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49

    PubMed  CAS  Google Scholar 

  • White HS (1997) Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 38(Suppl 1):S9–S17

    PubMed  CAS  Google Scholar 

  • Wilder RM (1921) Effects of ketonuria on the course of epilepsy. Mayo Clin Bull 2:307–310

    Google Scholar 

  • Wilkins L (1937) Epilepsy in childhood. III. Results with the ketogenic diet. J Pediatr 10:341–357

    Google Scholar 

  • Wu J-Y (1976) Purification, characterization and kinetic studies of GAD and GABA-T from mouse brain. In: Roberts E, Chase TN, Tower DB (eds) GABA in Nervous System Function. Raven, New York, pp 7–55

    Google Scholar 

  • Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa Hi, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou (2001) Human L-type amino acid transporter 1. LAT1.: characterization of function and expression in tumor cell lines. Biochem Biophys Acta 1514:291–302

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Nelson D, Daikhin Y, Erecinska M (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nelson D, Nissim I, Erecinska M (1996) Neuronal metabolism of branched-chain amino acids: Flux through the aminotransferase pathway in synaptosomes. J Neurochem 66:2136–2145

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Grunstein R, Nissim I (1997) Effects of ketone bodies on astrocyte amino acid metabolism. J Neurochem 69:682–692

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2001) Ketogenic diet, amino acid metabolism and seizure control. J Neurosci Res 66:931–940

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins, Leukot. Essential Fatty Acids 70:277–285

    CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Lazarow A, Luhovyy B, Wehrli S, Nissim I (2005) Response of brain amino acid metabolism to ketosis. Neurochem Int 47:119–128

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2006) Short-term fasting, seizure control and brain amino acid metabolism. Neurochem Int 48:650–656

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Yudkoff M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yudkoff, M., Daikhin, Y., Horyn, O., Nissim, I., Nissim, I. (2012). The Ketogenic Diet and Brain Metabolism. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_28

Download citation

Publish with us

Policies and ethics