Skip to main content

Fluorodeoxyglucose (FDG) Positron Emission Tomography (PET)

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Fluorodeoxyglucose labeled with [18F] (FDG) is a chemical analog of glucose, where a hydrogen atom of a glucose molecule is replaced with a positron emitter [18F]. Like glucose, FDG is metabolized by hexokinase during glycolysis in the cytosol of the cell; however, unlike glucose-6-phosphate, FDG-6-phosphate is not metabolized further but accumulates intracellularly thus allowing visualization and measurement of local metabolic activity. Relatively long-life of FDG as [18F] compound (110 min) and ability to achieve reliable quantitative estimates of cerebral metabolic rate of glucose and distinguish local changes in FDG uptake with visual inspection and semi-quantitative measures make FDG the most commonly used tracer in PET research and clinical neuroimaging. Besides demonstrating high-quality images of the baseline state of brain activity, FDG also provides accurate measures of the magnitude of changes in brain metabolism in response to various physiological stimulations, pharmacological interventions, and functional tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Khalil BW, Siegel GJ, Sackellares JC, Gilman S, Hichwa R, Marshall R (1987) Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Ann Neurol 22:480–486

    PubMed  CAS  Google Scholar 

  • Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    PubMed  CAS  Google Scholar 

  • Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM (2002) Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies. Am J Psychiatry 159:738–745

    PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    PubMed  CAS  Google Scholar 

  • Basu S, Alavi A (2008) Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. J Nucl Med 49:17N-21N, 37N

    Google Scholar 

  • Baxter LR Jr, Schwartz JM, Mazziotta JC, Phelps ME, Pahl JJ, Guze BH, Fairbanks L (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145:1560–1563

    PubMed  Google Scholar 

  • Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40:711–714

    PubMed  CAS  Google Scholar 

  • Ben-Yoseph O, Boxer PA, Ross BD (1996) Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res 21:1005–1012

    PubMed  CAS  Google Scholar 

  • Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  • Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815

    PubMed  Google Scholar 

  • Bolanos JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777:789–793

    PubMed  CAS  Google Scholar 

  • Britz-Cunningham SH, Millstine JW, Gerbaudo VH (2008) Improved discrimination of benign and malignant lesions on FDG PET/CT, using comparative activity ratios to brain, basal ganglia, or cerebellum. Clin Nucl Med 33:681–687

    PubMed  Google Scholar 

  • Brody AL, Saxena S, Silverman DH, Alborzian S, Fairbanks LA, Phelps ME, Huang SC, Wu HM, Maidment K, Baxter LR Jr (1999) Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res 91:127–139

    PubMed  CAS  Google Scholar 

  • Brooks RA (1982) Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23:538–539

    PubMed  CAS  Google Scholar 

  • Brooks RA, Hatazawa J, Di Chiro G, Larson SM, Fishbein DS (1987) Human cerebral glucose metabolism determined by positron emission tomography: a revisit. J Cereb Blood Flow Metab 7:427–432

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, DeLisi LE, Holcomb HH, Cappelletti J, King AC, Johnson J, Hazlett E, Dowling-Zimmerman S, Post RM, Morihisa J et al (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch Gen Psychiatry 41:1159–1166

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M, Lohr J, Wu J, Lottenberg S, Jerabek PA et al (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49:935–942

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L, Reynolds C (1997) Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 41:15–22

    PubMed  CAS  Google Scholar 

  • Chang JY, Duara R, Barker W, Apicella A, Finn R (1987) Two behavioral states studied in a single PET/FDG procedure: theory, method, and preliminary results. J Nucl Med 28:852–860

    PubMed  CAS  Google Scholar 

  • Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Phelps ME (1999) Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40:1164–1175

    PubMed  CAS  Google Scholar 

  • Chawluk JB, Dann R, Alavi A, Hurtig HI, Gur RE, Resnick S, Zimmerman RA, Reivich M (1990) The effect of focal cerebral atrophy in positron emission tomographic studies of aging and dementia. Int J Rad Appl Instrum B 17:797–804

    PubMed  CAS  Google Scholar 

  • Chen W, Novotny EJ, Zhu XH, Rothman DL, Shulman RG (1993) Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci USA 90:9896–9900

    PubMed  CAS  Google Scholar 

  • Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, Yun LS, Palant A (1998) Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 18:716–723

    PubMed  CAS  Google Scholar 

  • Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K (2001) Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-[(13)C] MRS and fMRI. Magn Reson Med 45:349–355

    PubMed  CAS  Google Scholar 

  • Chen YY, Chien C, Lee TW, Fu YK, Kuo TS, Jaw FS (2004) Dynamic evaluation of [18F]-FDG uptake in the rat brain by microPET imaging. Conf Proc IEEE Eng Med Biol Soc 6:4461–4464

    PubMed  CAS  Google Scholar 

  • Cheng TE, Yoder KK, Normandin MD, Risacher SL, Converse AK, Hampel JA, Miller MA, Morris ED (2009) A rat head holder for simultaneous scanning of two rats in small animal PET scanners: Design, construction, feasibility testing and kinetic validation. J Neurosci Methods 176:24–33

    PubMed  Google Scholar 

  • Chetelat G, Desgranges B, Landeau B, Mezenge F, Poline JB, de la Sayette V, Viader F, Eustache F, Baron JC (2008) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 131:60–71

    PubMed  CAS  Google Scholar 

  • Chugani HT, Chugani DC (1999) Basic mechanisms of childhood epilepsies: studies with positron emission tomography. Adv Neurol 79:883–891

    PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231:840–843

    PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    PubMed  CAS  Google Scholar 

  • Cleghorn JM, Garnett ES, Nahmias C, Firnau G, Brown GM, Kaplan R, Szechtman H, Szechtman B (1989) Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 28:119–133

    PubMed  CAS  Google Scholar 

  • Cohen RM, Semple WE, Gross M, Nordahl TE (1988) From syndrome to illness: delineating the pathophysiology of schizophrenia with PET. Schizophr Bull 14:169–176

    PubMed  CAS  Google Scholar 

  • Cornford EM, Shamsa K, Zeitzer JM, Enriquez CM, Wilson CL, Behnke EJ, Fried I, Engel J (2002) Regional analyses of CNS microdialysate glucose and lactate in seizure patients. Epilepsia 43:1360–1371

    PubMed  CAS  Google Scholar 

  • Crosby G, Sokoloff L (1983) Potential pitfalls in measuring regional cerebral glucose utilization; in reply. Anesthesiology 58:290–292

    Google Scholar 

  • Davis WK, Boyko OB, Hoffman JM, Hanson MW, Schold SC Jr, Burger PC, Friedman AH, Coleman RE (1993) [18F]2-fluoro-2-deoxyglucose-positron emission tomography correlation of gadolinium-enhanced MR imaging of central nervous system neoplasia. AJNR Am J Neuroradiol 14:515–523

    PubMed  CAS  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839

    PubMed  CAS  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    PubMed  CAS  Google Scholar 

  • Del Sole A, Clerici F, Chiti A, Lecchi M, Mariani C, Maggiore L, Mosconi L, Lucignani G (2008) Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Nucl Med Mol Imaging 35:1357–1366

    PubMed  Google Scholar 

  • Delgado-Esteban M, Almeida A, Bolanos JP (2000) D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75:1618–1624

    PubMed  CAS  Google Scholar 

  • DeLisi LE, Holcomb HH, Cohen RM, Pickar D, Carpenter W, Morihisa JM, King AC, Kessler R, Buchsbaum MS (1985) Positron emission tomography in schizophrenic patients with and without neuroleptic medication. J Cereb Blood Flow Metab 5:201–206

    PubMed  CAS  Google Scholar 

  • DeLisi LE, Buchsbaum MS, Holcomb HH, Langston KC, King AC, Kessler R, Pickar D, Carpenter WT Jr, Morihisa JM, Margolin R et al (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol Psychiatry 25:835–851

    PubMed  CAS  Google Scholar 

  • Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  • Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11:563–570

    PubMed  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    PubMed  CAS  Google Scholar 

  • Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7:1223–1233

    PubMed  CAS  Google Scholar 

  • Dringen R, Hoepken HH, Minich T, Ruedig C, Gibson GE, Dienel GA (2007) Pentose phosphate pathway and NADPH metabolism. In: Lajtha A (ed) Brain energetics. Integration of molecular and cellular processes. Springer, New York, pp 41–62

    Google Scholar 

  • Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113

    PubMed  Google Scholar 

  • Duara R, Barker W, Loewenstein D, Pascal S, Bowen B (1989) Sensitivity and specificity of positron emission tomography and magnetic resonance imaging studies in Alzheimer’s disease and multi-infarct dementia. Eur Neurol 29(Suppl 3):9–15

    PubMed  Google Scholar 

  • During MJ, Fried I, Leone P, Katz A, Spencer DD (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 62:2356–2361

    PubMed  CAS  Google Scholar 

  • Early TS, Reiman EM, Raichle ME, Spitznagel EL (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc Natl Acad Sci USA 84:561–563

    PubMed  CAS  Google Scholar 

  • Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, Strother SC, Cedarbaum J, Greene P, Fahn S, Rottenberg DA (1990) The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 5:203–213

    PubMed  CAS  Google Scholar 

  • Engel J Jr, Kuhl DE, Phelps ME (1982a) Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218:64–66

    PubMed  Google Scholar 

  • Engel J Jr, Kuhl DE, Phelps ME, Crandall PH (1982b) Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann Neurol 12:529–537

    PubMed  Google Scholar 

  • Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, Larossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519

    PubMed  CAS  Google Scholar 

  • Farkas T, Wolf AP, Jaeger J, Brodie JD, Christman DR, Fowler JS (1984) Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study Arch Gen Psychiatry 41:293–300

    CAS  Google Scholar 

  • Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G (1984) Cortical abnormalities in Alzheimer’s disease. Ann Neurol 16:649–654

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    PubMed  CAS  Google Scholar 

  • Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148

    PubMed  CAS  Google Scholar 

  • Francavilla TL, Miletich RS, Di Chiro G, Patronas NJ, Rizzoli HV, Wright DC (1989) Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery 24:1–5

    PubMed  CAS  Google Scholar 

  • Franck G, Maquet P, Sadzot B, Salmon E, Debets R, Dive D, Grisar T, Guillaume D, Van Veelen C, Van Huffelen A et al (1992) Contribution of positron emission tomography to the investigation of epilepsies of frontal lobe origin. Adv Neurol 57:471–485

    PubMed  CAS  Google Scholar 

  • Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM (1998) The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363

    PubMed  CAS  Google Scholar 

  • Friedland RP, Jagust WJ, Huesman RH, Koss E, Knittel B, Mathis CA, Ober BA, Mazoyer BM, Budinger TF (1989) Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 39:1427–1434

    PubMed  CAS  Google Scholar 

  • Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Takeuchi K, Matsumoto T, Fujita S, Honda K, Higashi Y, Kato N (2008) Metabolic changes in the brain of patients with late-onset major depression. Psychiatry Res 164:48–57

    PubMed  CAS  Google Scholar 

  • Fujiwara K, Naito Y, Senda M, Mori T, Manabe T, Shinohara S, Kikuchi M, Hori SY, Tona Y, Yamazaki H (2008) Brain metabolism of children with profound deafness: a visual language activation study by 18F-fluorodeoxyglucose positron emission tomography. Acta Otolaryngol 128:393–397

    PubMed  Google Scholar 

  • Gaitonde MK, Jones J, Evans G (1987) Metabolism of glucose into glutamate via the hexose monophosphate shunt and its inhibition by 6-aminonicotinamide in rat brain in vivo. Proc.R.Soc.Lond B Biol. Sci 231:71–90

    CAS  Google Scholar 

  • Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and venous cerebral blood Arterial-venous differences in man. J Biol Chem 18:325–332

    Google Scholar 

  • Gjedde A (1987) Does deoxyglucose uptake in the brain reflect energy metabolism? Biochem Pharmacol 36:1853–1861

    PubMed  CAS  Google Scholar 

  • Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant J Cereb Blood Flow Metab 5:163–178

    CAS  Google Scholar 

  • Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, MacGregor B, Wolf A (1981) Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Science 212:678–680

    PubMed  CAS  Google Scholar 

  • Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86:529–537

    PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–112

    PubMed  CAS  Google Scholar 

  • Gur RC, Gur RE, Resnick SM, Skolnick BE, Alavi A, Reivich M (1987) The effect of anxiety on cortical cerebral blood flow and metabolism. J Cereb Blood Flow Metab 7:173–177

    PubMed  CAS  Google Scholar 

  • Haense C, Herholz K, Jagust WJ, Heiss WD (2009) Performance of FDG PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266

    PubMed  CAS  Google Scholar 

  • Hanson MW, Glantz MJ, Hoffman JM, Friedman AH, Burger PC, Schold SC, Coleman RE (1991) FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 15:796–801

    PubMed  CAS  Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51

    PubMed  CAS  Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC (1986) Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab 6:170–183

    PubMed  CAS  Google Scholar 

  • Hayden MR, Martin WR, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, Ammann W, Harrop R, Rogers J, Ruth T et al (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36:888–894

    PubMed  CAS  Google Scholar 

  • Heiss WD, Szelies B, Kessler J, Herholz K (1991) Abnormalities of energy metabolism in Alzheimer’s disease studied with PET. Ann N Y Acad Sci 640:65–71

    PubMed  CAS  Google Scholar 

  • Heiss WD, Kessler J, Slansky I, Mielke R, Szelies B, Herholz K (1993) Activation PET as an instrument to determine therapeutic efficacy in Alzheimer’s disease. Ann N Y Acad Sci 695:327–331

    PubMed  CAS  Google Scholar 

  • Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–316

    PubMed  CAS  Google Scholar 

  • Hertz L, Yu AC, Kala G, Schousboe A (2000) Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem Int 37:83–102

    PubMed  CAS  Google Scholar 

  • Ho SS, Berkovic SF, Berlangieri SU, Newton MR, Egan GF, Tochon-Danguy HJ, McKay WJ (1995) Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ann Neurol 37:738–745

    PubMed  CAS  Google Scholar 

  • Hothersall JS, Baquer N, Greenbaum AL, McLean P (1979) Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes. Arch Biochem Biophys 198:478–492

    PubMed  CAS  Google Scholar 

  • Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–82

    PubMed  CAS  Google Scholar 

  • Huang SC, Phelps ME, Hoffman EJ, Kuhl DE (1981) Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metab 1:391–401

    PubMed  CAS  Google Scholar 

  • Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ (1984) Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab 4:35–40

    PubMed  CAS  Google Scholar 

  • Ichimiya A, Herholz K, Mielke R, Kessler J, Slansky I, Heiss WD (1994) Difference of regional cerebral metabolic pattern between presenile and senile dementia of the Alzheimer type: a factor analytic study. J Neurol Sci 123:11–17

    PubMed  CAS  Google Scholar 

  • Idbaih A, Burlet A, Adle-Biassette H, Boisgard R, Coulon C, Paris S, Marie Y, Donadieu J, Hoang-Xuan K, Ribeiro MJ (2007) Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study. Brain Res 1158:164–168

    PubMed  CAS  Google Scholar 

  • Ikezaki K, Black KL, Conklin SG, Becker DP (1992) Histochemical evaluation of energy metabolism in rat glioma. Neurol Res 14:289–293

    PubMed  CAS  Google Scholar 

  • Janigro D (1999) Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 37:223–232

    PubMed  CAS  Google Scholar 

  • Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung WK (1993) Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 33:540–548

    PubMed  CAS  Google Scholar 

  • Kang DH, Kwon JS, Kim JJ, Youn T, Park HJ, Kim MS, Lee DS, Lee MC (2003) Brain glucose metabolic changes associated with neuropsychological improvements after 4 months of treatment in patients with obsessive-compulsive disorder. Acta Psychiatr Scand 107:291–297

    PubMed  Google Scholar 

  • Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, Arifuzzman AI, Houle S, Vaccarino FJ (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 158:899–905

    PubMed  CAS  Google Scholar 

  • Kim SG, Ugurbil K (1997) Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 38:59–65

    PubMed  CAS  Google Scholar 

  • Kim CK, Gupta NC, Chandramouli B, Alavi A (1994) Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 35:164–167

    PubMed  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    PubMed  CAS  Google Scholar 

  • Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18:655–660

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Engel J Jr, Phelps ME, Selin C (1980a) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348–360

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980b) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434

    PubMed  CAS  Google Scholar 

  • Kuhr WG, Korf J (1988) Extracellular lactic acid as an indicator of brain metabolism: continuous on-line measurement in conscious, freely moving rats with intrastriatal dialysis. J Cereb Blood Flow Metab 8:130–137

    PubMed  CAS  Google Scholar 

  • Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M (1993) Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study. Proc Natl Acad Sci USA 90:7019–7023

    PubMed  CAS  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 10:180–189

    PubMed  CAS  Google Scholar 

  • Kuwabara H, Ohta S, Brust P, Meyer E, Gjedde A (1992) Density of perfused capillaries in living human brain during functional activation. Prog Brain Res 91:209–215

    PubMed  CAS  Google Scholar 

  • Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1989) Cerebral glucose consumption measured by PET in patients with and without psychiatric symptoms of Huntington’s disease. Psychiatry Res 29:361–362

    PubMed  CAS  Google Scholar 

  • Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113(Pt 5):1405–1423

    PubMed  Google Scholar 

  • Labbe C, Froment JC, Kennedy A, Ashburner J, Cinotti L (1996) Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. Alzheimer Dis Assoc Disord 10:141–170

    PubMed  CAS  Google Scholar 

  • Lamusuo S, Ruottinen HM, Knuuti J, Harkonen R, Ruotsalainen U, Bergman J, Haaparanta M, Solin O, Mervaala E, Nousiainen U, Jaaskelainen S, Ylinen A, Kalviainen R, Rinne JK, Vapalahti M, Rinne JO (1997) Comparison of [18F]FDG-PET, [99mTc]-HMPAO-SPECT, and [123I]-iomazenil-SPECT in localising the epileptogenic cortex. J Neurol Neurosurg Psychiatry 63:743–748

    PubMed  CAS  Google Scholar 

  • Leiderman DB, Balish M, Bromfield EB, Theodore WH (1991) Effect of valproate on human cerebral glucose metabolism. Epilepsia 32:417–422

    PubMed  CAS  Google Scholar 

  • Levin DC, Rao VM, Frangos AJ, Parker L, Sunshine JH (2007) Recent trends in utilization of vascular ultrasound among radiologists, surgeons, cardiologists, and other physicians. J Am Coll Radiol 4:125–127

    PubMed  Google Scholar 

  • Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, Desanti S, Kemppainen N, Nagren K, Kim BC, Tsui W, de Leon MJ (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181

    PubMed  Google Scholar 

  • Lucignani G, Schmidt KC, Moresco RM, Striano G, Colombo F, Sokoloff L, Fazio F (1993) Measurement of regional cerebral glucose utilization with fluorine-18-FDG and PET in heterogeneous tissues: theoretical considerations and practical procedure. J Nucl Med 34:360–369

    PubMed  CAS  Google Scholar 

  • Machado CJ, Snyder AZ, Cherry SR, Lavenex P, Amaral DG (2008) Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: a microPET imaging study. Neuroimage 39:832–846

    PubMed  Google Scholar 

  • Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15:485–491

    PubMed  CAS  Google Scholar 

  • Madsen PL, Linde R, Hasselbalch SG, Paulson OB, Lassen NA (1998) Activation-induced resetting of cerebral oxygen and glucose uptake in the rat. J Cereb Blood Flow Metab 18:742–748

    PubMed  CAS  Google Scholar 

  • Magistretti PJ (2000) Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling(1). Brain Res 886:108–112

    PubMed  CAS  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    PubMed  CAS  Google Scholar 

  • Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS, Tekell JL, Silva JA, McGinnis S, Glass TG, Martin CC, Fox PT (1997) Cingulate function in depression: a potential predictor of treatment response. Neuroreport 8:1057–1061

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32:921–937

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Frackowiak RS, Phelps ME (1992) The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med 22:233–246

    PubMed  CAS  Google Scholar 

  • Medina JM, Tabernero A, Tovar JA, Martin-Barrientos J (1996) Metabolic fuel utilization and pyruvate oxidation during the postnatal period. J Inherit Metab Dis 19:432–442

    PubMed  CAS  Google Scholar 

  • Mega MS, Cummings JL, O’Connor SM, Dinov ID, Reback E, Felix J, Masterman DL, Phelps ME, Small GW, Toga AW (2001) Cognitive and metabolic responses to metrifonate therapy in Alzheimer disease. Neuropsychiatry Neuropsychol Behav Neurol 14:63–68

    PubMed  CAS  Google Scholar 

  • Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ (1996) Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47:454–461

    PubMed  CAS  Google Scholar 

  • Mineura K, Yasuda T, Kowada M, Shishido F, Ogawa T, Uemura K (1986) Positron emission tomographic evaluation of histological malignancy in gliomas using oxygen-15 and fluorine-18-fluorodeoxyglucose. Neurol Res 8:164–168

    PubMed  CAS  Google Scholar 

  • Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, Uemura K (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73: 2386–2394

    PubMed  CAS  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    PubMed  CAS  Google Scholar 

  • Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ (2002) Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 16:531–537

    PubMed  Google Scholar 

  • Mintun MA, Sacco D, Snyder AZ, Couture P, Powers WJ, Hornbeck R, Videen TO, McGee-Minnich L, Perlmutter JS, Mach RH, Morris JC, Raichle ME (2006) Distribution of glycolysis in the resting healthy human brain correlates with distribution of beta-amyloid plaques in Alzheimer’s disease. In: 2006 Neuroscience Meeting Planner No. 707.6

    Google Scholar 

  • Mirrione MM, Schiffer WK, Siddiq M, Dewey SL, Tsirka SE (2006) PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy. Synapse 59:119–121

    PubMed  CAS  Google Scholar 

  • Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49: 390–398

    PubMed  Google Scholar 

  • Murase K, Kuwabara H, Yasuhara Y, Evans AC, Gjedde A (1996) Mapping of change in cerebral glucose utilization using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method. IEEE Trans Med Imaging 15:824–835

    PubMed  CAS  Google Scholar 

  • Naidoo-Variawa S, Hey-Cunningham AJ, Lehnert W, Kench PL, Kassiou M, Banati R, Meikle SR (2007) High-resolution imaging of the large non-human primate brain using microPET: a feasibility study. Phys Med Biol 52:6627–6638

    PubMed  CAS  Google Scholar 

  • Nehlig A, Pereira dV (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221

    PubMed  CAS  Google Scholar 

  • Nordahl TE, Benkelfat C, Semple WE, Gross M, King AC, Cohen RM (1989) Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology 2:23–28

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, Warpman U, Johansson M, Hellstrom-Lindahl E, Bjurling P et al (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13:747–758

    PubMed  CAS  Google Scholar 

  • Nordli DR Jr, Kuroda MM, Carroll J, Koenigsberger DY, Hirsch LJ, Bruner HJ, Seidel WT, De VDC (2001) Experience with the ketogenic diet in infants. Pediatrics 108:129–133

    PubMed  Google Scholar 

  • Ochs RF, Gloor P, Tyler JL, Wolfson T, Worsley K, Andermann F, Diksic M, Meyer E, Evans A (1987) Effect of generalized spike-and-wave discharge on glucose metabolism measured by positron emission tomography. Ann Neurol 21:458–464

    PubMed  CAS  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    PubMed  CAS  Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    PubMed  CAS  Google Scholar 

  • Patronas NJ, Di Chiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, Rizzoli HV, Kessler RM, Manning RG, Channing M, Wolf AP, O’Connor CM (1982) Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144:885–889

    PubMed  CAS  Google Scholar 

  • Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822

    PubMed  CAS  Google Scholar 

  • Paul AK, Lobarinas E, Simmons R, Wack D, Luisi JC, Spernyak J, Mazurchuk R, Abdel-Nabi H, Salvi R (2008) Metabolic imaging of rat brain during pharmacologically-induced tinnitus. Neuroimage 44(2):312–318

    PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brain function and biochemistry. Science 228:799–809

    PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packwood J, Metter J, Engel J Jr (1981) Tomographic mapping of human cerebral metabolism visual stimulation and deprivation. Neurology 31:517–529

    PubMed  CAS  Google Scholar 

  • Pietrini P, Dani A, Furey ML, Alexander GE, Freo U, Grady CL, Mentis MJ, Mangot D, Simon EW, Horwitz B, Haxby JV, Schapiro MB (1997) Low glucose metabolism during brain stimulation in older Down’s syndrome subjects at risk for Alzheimer’s disease prior to dementia. Am J Psychiatry 154:1063–1069

    PubMed  CAS  Google Scholar 

  • Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, Wurker M, Heiss WD (1994) An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35:2011–2018

    PubMed  CAS  Google Scholar 

  • Potkin SG, Anand R, Fleming K, Alva G, Keator D, Carreon D, Messina J, Wu JC, Hartman R, Fallon JH (2001) Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease. Int J Neuropsychopharmacol 4:223–230

    PubMed  CAS  Google Scholar 

  • Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    PubMed  CAS  Google Scholar 

  • Przedborski S, Goldman S, Giladi N, Dhawan V, Takikawa S, Hildebrand J, Fahn S, Eidelberg D (1993) Positron emission tomography in hemiparkinsonism-hemiatrophy syndrome. Adv Neurol 60:501–505

    PubMed  CAS  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    PubMed  CAS  Google Scholar 

  • Raichle ME, Posner JB, Plum F (1970) Cerebral blood flow during and after hyperventilation. Arch Neurol 23:394–403

    PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    PubMed  CAS  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    PubMed  CAS  Google Scholar 

  • Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    PubMed  CAS  Google Scholar 

  • Rhodes CG, Wise RJ, Gibbs JM, Frackowiak RS, Hatazawa J, Palmer AJ, Thomas DG, Jones T (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14:614–626

    PubMed  CAS  Google Scholar 

  • Richter D, Dawson RM (1948) Brain lactate in emotion. Nature 161:205

    PubMed  CAS  Google Scholar 

  • Rougemont D, Baron JC, Collard P, Bustany P, Comar D, Agid Y (1984) Local cerebral glucose utilisation in treated and untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 47:824–830

    PubMed  CAS  Google Scholar 

  • Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38:209–222

    PubMed  Google Scholar 

  • Saha GB (2005) Basics of PET imaging: physics, chemistry, and regulations. Springer, New York

    Google Scholar 

  • Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    PubMed  CAS  Google Scholar 

  • Scheinberg P, Bourne B, Reinmuth OM (1965) Human Cerebral Lactate and Pyruvate Extraction. I Control Subjects Arch Neurol 12:246–250

    CAS  Google Scholar 

  • Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    PubMed  Google Scholar 

  • Schlemmer HP, Pichler BJ, Krieg R, Heiss WD (2009) An integrated MR/PET system: prospective applications. Abdom Imaging 34:668–674

    PubMed  Google Scholar 

  • Schreckenberger M, Spetzger U, Sabri O, Meyer PT, Zeggel T, Zimny M, Gilsbach J, Buell U (2001) Localisation of motor areas in brain tumour patients: a comparison of preoperative [18F]FDG-PET and intraoperative cortical electrostimulation. Eur J Nucl Med 28:1394–1403

    PubMed  CAS  Google Scholar 

  • Schuier F, Orzi F, Suda S, Lucignani G, Kennedy C, Sokoloff L (1990) Influence of plasma glucose concentration on lumped constant of the deoxyglucose method: effects of hyperglycemia in the rat. J Cereb Blood Flow Metab 10:765–773

    PubMed  CAS  Google Scholar 

  • Schwartz JM, Baxter LR Jr, Mazziotta JC, Gerner RH, Phelps ME (1987) The differential diagnosis of depression. Relevance of positron emission tomography studies of cerebral glucose metabolism to the bipolar-unipolar dichotomy. JAMA 258:1368–1374

    PubMed  CAS  Google Scholar 

  • Schwartzkroin PA (1999) Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Res 37:171–180

    PubMed  CAS  Google Scholar 

  • Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53:91–101

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21:35–45

    PubMed  CAS  Google Scholar 

  • Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 286:2120–2127

    PubMed  CAS  Google Scholar 

  • Smith TA (1998) FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 19:97–105

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    PubMed  CAS  Google Scholar 

  • Sols A, Crane RK (1954) Substrate specificity of brain hexokinase. J Biol Chem 210:581–595

    PubMed  CAS  Google Scholar 

  • Spanaki MV, Siegel H, Kopylev L, Fazilat S, Dean A, Liow K, Ben-Menachem E, Gaillard WD, Theodore WH (1999a) The effect of vigabatrin (gamma-vinyl GABA) on cerebral blood flow and metabolism. Neurology 53:1518–1522

    PubMed  CAS  Google Scholar 

  • Spanaki MV, Spencer SS, Corsi M, MacMullan J, Seibyl J, Zubal IG (1999b) Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 40:730–736

    PubMed  CAS  Google Scholar 

  • Spence AM, Muzi M, Graham MM, O’Sullivan F, Krohn KA, Link JM, Lewellen TK, Lewellen B, Freeman SD, Berger MS, Ojemann GA (1998) Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med 39:440–448

    PubMed  CAS  Google Scholar 

  • Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  • Strauss LG (1996) Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415

    PubMed  CAS  Google Scholar 

  • Suda S, Shinohara M, Miyaoka M, Lucignani G, Kennedy C, Sokoloff L (1990) The lumped constant of the deoxyglucose method in hypoglycemia: effects of moderate hypoglycemia on local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 10:499–509

    PubMed  CAS  Google Scholar 

  • Sung KK, Jang DP, Lee S, Kim M, Lee SY, Kim YB, Park CW, Cho ZH (2008) Neural responses in rat brain during acute immobilization stress: a [F-18]FDG micro PET imaging study. Neuroimage 44(3):1074–1080

    PubMed  Google Scholar 

  • Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A, Friedland R, Rapoport SI, Rapoport JL (1989) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 46:518–523

    PubMed  CAS  Google Scholar 

  • Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, Margouleff D, Eidelberg D (1993) Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188:131–136

    PubMed  CAS  Google Scholar 

  • Ter-Pogossian MM (1992) The origins of positron emission tomography. Semin Nucl Med 22:140–149

    PubMed  CAS  Google Scholar 

  • Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG et al (1983) [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437

    PubMed  CAS  Google Scholar 

  • Theodore WH, Bairamian D, Newmark ME, DiChiro G, Porter RJ, Larson S, Fishbein D (1986a) Effect of phenytoin on human cerebral glucose metabolism. J Cereb Blood Flow Metab 6:315–320

    PubMed  CAS  Google Scholar 

  • Theodore WH, Dorwart R, Holmes M, Porter RJ, DiChiro G (1986b) Neuroimaging in refractory partial seizures: comparison of PET, CT, and MRI. Neurology 36:750–759

    PubMed  CAS  Google Scholar 

  • Theodore WH, Fishbein D, Dubinsky R (1988) Patterns of cerebral glucose metabolism in patients with partial seizures. Neurology 38:1201–1206

    PubMed  CAS  Google Scholar 

  • Theodore WH, Bromfield E, Onorati L (1989) The effect of carbamazepine on cerebral glucose metabolism. Ann Neurol 25:516–520

    PubMed  CAS  Google Scholar 

  • Townsend DW (2008) Positron emission tomography/computed tomography. Semin Nucl Med 38:152–166

    PubMed  Google Scholar 

  • Ueki M, Linn F, Hossmann KA (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494

    PubMed  CAS  Google Scholar 

  • Uijl SG, Leijten FS, Arends JB, Parra J, van Huffelen AC, Moons KG (2007) The added value of [18F]-fluoro-D-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia 48:2121–2129

    PubMed  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107:17757–17762

    Google Scholar 

  • Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF, Jr (2001) Ketone bodies, potential therapeutic uses. IUBMB. Life 51:241–247

    Google Scholar 

  • Vicario C, Tabernero A, Medina JM (1993) Regulation of lactate metabolism by albumin in rat neurons and astrocytes from primary culture. Pediatr Res 34:709–715

    PubMed  CAS  Google Scholar 

  • Videen TO, Perlmutter JS, Mintun MA, Raichle ME (1988) Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 8:662–670

    PubMed  CAS  Google Scholar 

  • Vielhaber S, Von Oertzen JH, Kudin AF, Schoenfeld A, Menzel C, Biersack HJ, Kral T, Elger CE, Kunz WS (2003) Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia 44:193–199

    PubMed  CAS  Google Scholar 

  • Vining EP, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, Shinnar S, Shuman R, Trevathan E, Wheless JW (1998) A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 55:1433–1437

    PubMed  CAS  Google Scholar 

  • Vlassenko AG, Thiessen B, Beattie BJ, Malkin MG, Blasberg RG (2000) Evaluation of early response to SU101 target-based therapy in patients with recurrent supratentorial malignant gliomas using FDG PET and Gd-DTPA MRI. J Neurooncol 46:249–259

    PubMed  CAS  Google Scholar 

  • Vlassenko AG, Rundle MM, Mintun MA (2006) Human brain glucose metabolism may evolve during activation: findings from a modified FDG PET paradigm. Neuroimage 33:1036–1041

    PubMed  Google Scholar 

  • Vlassenko AG, Vaishnavi NS, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-β (Ab) deposition. Proc Natl Acad Sci USA 107:17763–17767

    Google Scholar 

  • Volkow ND, Brodie JD, Wolf AP, Angrist B, Russell J, Cancro R (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. J Neurol Neurosurg Psychiatry 49:1199–1202

    PubMed  CAS  Google Scholar 

  • Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr, Jennings RG, Karow D, Dale AM (2010) Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347–354

    PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, Zhu W, Wong CT, Pappas NR, Geliebter A, Fowler JS (2004) Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 21:1790–1797

    PubMed  Google Scholar 

  • Weber G (1977) Enzymology of cancer cells (second of two parts). N Engl J Med 296:541–551

    PubMed  CAS  Google Scholar 

  • Wienhard K (2002) Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods 27:218–225

    PubMed  CAS  Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125

    PubMed  CAS  Google Scholar 

  • Wiesel FA, Wik G, Sjogren I, Blomqvist G, Greitz T, Stone-Elander S (1987) Regional brain glucose metabolism in drug free schizophrenic patients and clinical correlates. Acta Psychiatr Scand 76:628–641

    PubMed  CAS  Google Scholar 

  • Wolkin A, Jaeger J, Brodie JD, Wolf AP, Fowler J, Rotrosen J, Gomez-Mont F, Cancro R (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am J Psychiatry 142:564–571

    PubMed  CAS  Google Scholar 

  • Wolkin A, Angrist B, Wolf A, Brodie JD, Wolkin B, Jaeger J, Cancro R, Rotrosen J (1988) Low frontal glucose utilization in chronic schizophrenia: a replication study. Am J Psychiatry 145:251–253

    PubMed  CAS  Google Scholar 

  • Wong KP, Feng D, Meikle SR, Fulham MJ (2001) Simultaneous estimation of physiological parameters and the input function–in vivo PET data. IEEE Trans Inf Technol Biomed 5:67–76

    PubMed  CAS  Google Scholar 

  • Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998a) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152

    PubMed  CAS  Google Scholar 

  • Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC (1998b) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22:153–165

    PubMed  CAS  Google Scholar 

  • Yoshii F, Barker WW, Chang JY, Loewenstein D, Apicella A, Smith D, Boothe T, Ginsberg MD, Pascal S, Duara R (1988) Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J Cereb Blood Flow Metab 8:654–661

    PubMed  CAS  Google Scholar 

  • Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20:296–303

    PubMed  CAS  Google Scholar 

  • Zaidi H, Montandon ML (2006) The new challenges of brain PET Imaging technology. Curr Med Imaging Rev 2:3–13

    CAS  Google Scholar 

  • Zanotti-Fregonara P, Maroy R, Comtat C, Jan S, Gaura V, Bar-Hen A, Ribeiro MJ, Trebossen R (2009) Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function. J Nucl Med 50:461–467

    PubMed  Google Scholar 

  • Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847–850

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei G. Vlassenko M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vlassenko, A.G., Mintun, M.A. (2012). Fluorodeoxyglucose (FDG) Positron Emission Tomography (PET). In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_10

Download citation

Publish with us

Policies and ethics