Skip to main content

Inequalities of Ostrowski Type

  • 518 Accesses

Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Ostrowski’s type inequalities provide sharp error estimates in approximating the value of a function by its integral mean. They can be utilized to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. They also shows, in general, that the mid-point rule provides the best approximation in the class of all Riemann sums sampled in the interior points of a given partition.

Keywords

  • Hilbert Space
  • Convex Function
  • Bounded Variation
  • Type Inequality
  • Selfadjoint Operator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-1779-8_2
  • Chapter length: 65 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-1-4614-1779-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math. 135 (2002), no. 3, 175–189.

    Google Scholar 

  2. P. Cerone and S.S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135–200.

    Google Scholar 

  3. P. Cerone and S.S. Dragomir, New bounds for the three-point rule involving the Riemann–Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53–62.

    Google Scholar 

  4. P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697–712.

    MATH  MathSciNet  Google Scholar 

  5. S.S. Dragomir, Error estimates in approximating functions of selfadjoint operators in Hilbert spaces via a Montgomery’s type expansion, Preprint RGMIA Res. Rep. Coll. 14(2011), Art. 2.

    Google Scholar 

  6. S.S. Dragomir,  An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373–382.

    MATH  Google Scholar 

  7. S.S. Dragomir, On the Ostrowski’s inequality for Riemann–Stieltjes integral, Korean J. Appl. Math. 7 (2000), 477–485.

    Google Scholar 

  8. S.S. Dragomir, On the Ostrowski inequality for Riemann–Stieltjes integral ∫ \nolimits \nolimits a b ftdut where f is of Hölder type and u is of bounded variation and applications, J. KSIAM 5(1) (2001), 35–45.

    Google Scholar 

  9. S.S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. KSIAM 3(1) (1999), 127–135.

    Google Scholar 

  10. S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. 38 (1999), 33–37.

    Google Scholar 

  11. S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. 3(5) (2002), Art. 68.

    Google Scholar 

  12. S.S. Dragomir, Some Ostrowski’s Type Vector Inequalities for Functions of Selfadjoint Operators in Hilbert Spaces, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 7.

    Google Scholar 

  13. S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. , 38 (1999), 33–37.

    Google Scholar 

  14. S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. , 3(5) (2002), Art. 68.

    Google Scholar 

  15. S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89–112.

    MathSciNet  Google Scholar 

  16. S.S. Dragomir, A generalisation of Cerone’s identity and applications, Tamsui Oxf. J. Math. Sci., 23(1) (2007), 79–90.

    MATH  MathSciNet  Google Scholar 

  17. S.S. Dragomir, Accurate approximations for the Riemann–Stieltjes integral via theory of inequalities, J. Math. Inequal., 3(4) (2009), 663–681.

    MATH  MathSciNet  Google Scholar 

  18. S.S. Dragomir, Bounds for the difference between functions of selfadjoint operators in Hilbert spaces and integral means, Preprint RGMIA Res. Rep. Coll. 14(2011), Art. 1.

    Google Scholar 

  19. S.S. Dragomir, On the Ostrowski’s inequality for mappings of bounded variation and applications, Math. Ineq. & Appl. , 4(1) (2001), 33–40.

    Google Scholar 

  20. S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. , 38 (1999), 33–37.

    Google Scholar 

  21. S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. , 3(5) (2002), Art. 68.

    Google Scholar 

  22. S.S. Dragomir, Comparison between functions of selfadjoint operators in Hilbert spaces and integral means, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art.10.

    Google Scholar 

  23. S.S. Dragomir, Ostrowski’s type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 9.

    Google Scholar 

  24. S.S. Dragomir, On the Ostrowski inequality for the Riemann–Stieltjes integral ∫ \nolimits \nolimits a b ftdut, where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5(2001), No. 1, 35–45.

    Google Scholar 

  25. S.S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e) (2008), Art.. [ONLINE: http://www.staff.vu.edu.au/RGMIA/v11(E).asp].

  26. S.S. Dragomir, Ostrowski’s type inequalities for Hölder continuous functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 6.

    Google Scholar 

  27. S.S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, Dordrecht, 2002.

    Google Scholar 

  28. S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanic , 42(90) (4) (1999), 301–314.

    Google Scholar 

  29. S.S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L 1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239–244. 

    MATH  MathSciNet  Google Scholar 

  30. S.S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105–109.

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. S.S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L p -norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math. 40(3), (1998), 245–304.

    MathSciNet  Google Scholar 

  32. S.S. Dragomir and I. Fedotov, An inequality of Grüss type for Riemann–Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287–292.

    MATH  MathSciNet  Google Scholar 

  33. S.S. Dragomir and I. Fedotov, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, Non. Funct. Anal. & Appl., 6(3) (2001), 425–437.

    MATH  MathSciNet  Google Scholar 

  34. A.M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math. J. , 42(117) (1992), No. 2, 298–310.

    Google Scholar 

  35. T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

    Google Scholar 

  36. Z. Liu, Refinement of an inequality of Grüss type for Riemann–Stieltjes integral, Soochow J. Math. , 30(4) (2004), 483–489.

    Google Scholar 

  37. C.A. McCarthy, c p , Israel J. Math., 5(1967), 249–271.

    CrossRef  MathSciNet  Google Scholar 

  38. B. Mond and J. Pečarić, Convex inequalities in Hilbert spaces, Houston J. Math., 19(1993), 405–420.

    MATH  MathSciNet  Google Scholar 

  39. A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel , 10 (1938), 226–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slivestru Sever Dragomir .

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dragomir, S.S. (2012). Inequalities of Ostrowski Type. In: Operator Inequalities of Ostrowski and Trapezoidal Type. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1779-8_2

Download citation