Skip to main content

Sex-Steroid Rapid Action and Its Role in Invasiveness and Metastasis of Breast Cancer

  • Chapter
  • First Online:
Advances in Rapid Sex-Steroid Action

Abstract

Through a variety of rapidly recruited intracellular mediators steroid receptors enact quick changes in the function of cells in different settings. Emerging evidence indicates that the interaction with the extracellular environment and cell movement are regulated by sex steroids through such rapid mechanisms. Exposure of different cell types to estrogen, progesterone or other steroids results in swift changes in the morphology of the cells, primarily because of changes in the position and organization of actin fibers. These changes are coupled with the formation of a variety of specialized cell membrane structures that are necessary for the cell interaction with high-molecular weight extracellular proteins or nearby cells, and thus to move around or to cross-talk with neighbor cells. Prominent actions on horizontal cell movement or on the ability to invade matrices have also been observed during exposure to estrogen or other steroids, which indicate that these steroids are powerful regulators of cell movement. Many of these actions are enacted via the rapid activation on extra-nuclear signaling cascades of sex steroid receptors that lead to the recruitment of small GTPases such as RhoA or Rac, which therefore drive the changes in actin positioning. These actions of sex steroids appear to be fundamental for migration and invasion in endocrine-sensitive breast cancer cells, and may therefore have relevance for local progression and metastasis. The characterization of these rapid actions of estrogens and other steroids will help to understand the effects of these hormones in the setting of breast cancer metastasis, and may eventually lead to new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21:427–433

    PubMed  CAS  Google Scholar 

  2. Alam SM, Rajendran M, Ouyang S, Veeramani S, Zhang L, Lin MF (2009) A novel role of Shc adaptor proteins in steroid hormone-regulated cancers. Endocr Relat Cancer 16:1–16

    PubMed  CAS  Google Scholar 

  3. Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47

    PubMed  CAS  Google Scholar 

  4. Verkooijen HM, Bouchardy C, Vinh-Hung V, Rapiti E, Hartman M (2009) The incidence of breast cancer and changes in the use of hormone replacement therapy: a review of the evidence. Maturitas 64:80–85

    PubMed  CAS  Google Scholar 

  5. Russo J, Russo IH (2006) The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol 102:89–96

    PubMed  CAS  Google Scholar 

  6. Braun S, Auer D, Marth C (2009) The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Invest 27:598–603

    PubMed  CAS  Google Scholar 

  7. Fu XD, Giretti MS, Baldacci C, Garibaldi S, Flamini M, Sanchez AM, Gadducci A, Genazzani AR, Simoncini T (2008) Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton. PLoS One 3:e2790

    PubMed  Google Scholar 

  8. Janni W, Hepp P (2010) Adjuvant aromatase inhibitor therapy: outcomes and safety. Cancer Treat Rev 36:249–261

    PubMed  CAS  Google Scholar 

  9. Collaborative Group on Hormonal Factors in Breast Cancer (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 350:1047–1059

    Google Scholar 

  10. DiSaia PJ (1996) Hormone replacement therapy in the gynecologic and breast cancer patient. Cancer Control 3:101–106

    PubMed  Google Scholar 

  11. Fuqua SA (2001) The role of estrogen receptor in breast cancer metastasis. J Mammary Gland Biol Neoplasia 6:407–417

    PubMed  CAS  Google Scholar 

  12. Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314:1467–1470

    PubMed  CAS  Google Scholar 

  13. Vanzulli SI, Soldati R, Meiss R, Colombo L, Molinolo AA, Lanari C (2005) Estrogen or antiprogestin treatment induces complete regression of pulmonary and axillary metastases in an experimental model of breast cancer progression. Carcinogenesis 26:1055–1063

    PubMed  CAS  Google Scholar 

  14. Kato S, Pinto M, Carvajal A, Espinoza N, Monso C, Sadarangani A, Villalon M, Brosens JJ, White JO, Richer JK, Horwitz KB, Owen GI (2005) Progesterone increases tissue factor gene expression, procoagulant activity, and invasion in the breast cancer cell line ZR-75–1. J Clin Endocrinol Metab 90:1181–1188

    PubMed  CAS  Google Scholar 

  15. Hyder SM, Chiappetta C, Stancel GM (2001) Pharmacological and endogenous progestins induce vascular endothelial growth factor expression in human breast cancer cells. Int J Cancer 92:469–473

    PubMed  CAS  Google Scholar 

  16. Zhang Y, Ma B, Fan Q (2010) Mechanisms of breast cancer bone metastasis. Cancer Lett 292:1–7

    PubMed  CAS  Google Scholar 

  17. Berridge MJ, Bootman MD, Lipp P (1998) Calcium–a life and death signal. Nature 395:645–648

    PubMed  CAS  Google Scholar 

  18. Cutini P, Selles J, Massheimer V (2009) Cross-talk between rapid and long term effects of progesterone on vascular tissue. J Steroid Biochem Mol Biol 115:36–43

    PubMed  CAS  Google Scholar 

  19. Rauschemberger MB, Selles J, Massheimer V (2008) The direct action of estrone on vascular tissue involves genomic and non-genomic action. Life Sci 82:115–123

    PubMed  CAS  Google Scholar 

  20. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417

    PubMed  CAS  Google Scholar 

  21. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730

    PubMed  CAS  Google Scholar 

  22. Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M (2004) Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64:7156–7168

    PubMed  CAS  Google Scholar 

  23. Ray P, Ghosh SK, Zhang DH, Ray A (1997) Repression of interleukin-6 gene expression by 17 beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS Lett 409:79–85

    PubMed  CAS  Google Scholar 

  24. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL (2001) Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 276:13615–13621

    PubMed  CAS  Google Scholar 

  25. Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    PubMed  CAS  Google Scholar 

  26. Fortunati N (1999) Sex hormone-binding globulin: not only a transport protein. What news is around the corner? J Endocrinol Invest 22:223–234

    PubMed  CAS  Google Scholar 

  27. Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA (1999) Androgen and estrogen signaling at the cell membrane via G-proteins and cyclic adenosine monophosphate. Steroids 64:100–106

    PubMed  CAS  Google Scholar 

  28. Fortunati N, Fissore F, Fazzari A, Becchis M, Comba A, Catalano MG, Berta L, Frairia R (1996) Sex steroid binding protein exerts a negative control on estradiol action in MCF-7 cells (human breast cancer) through cyclic adenosine 3’, 5’-monophosphate and protein kinase A. Endocrinology 137:686–692

    PubMed  CAS  Google Scholar 

  29. Nakhla AM, Romas NA, Rosner W (1997) Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion through the intermediacy of sex hormone-binding globulin. J Biol Chem 272:6838–6841

    PubMed  CAS  Google Scholar 

  30. Armen TA, Gay CV (2000) Simultaneous detection and functional response of testosterone and estradiol receptors in osteoblast plasma membranes. J Cell Biochem 79:620–627

    PubMed  CAS  Google Scholar 

  31. Kampa M, Papakonstanti EA, Hatzoglou A, Stathopoulos EN, Stournaras C, Castanas E (2002) The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors that increase PSA secretion and modify actin cytoskeleton. FASEB J 16:1429–1431

    PubMed  CAS  Google Scholar 

  32. Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I (1999) Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem Biophys Res Commun 263:257–262

    PubMed  CAS  Google Scholar 

  33. Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451

    PubMed  CAS  Google Scholar 

  34. Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH (2004) Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad Sci U S A 101:17126–17131

    PubMed  CAS  Google Scholar 

  35. Song RX, Zhang Z, Santen RJ (2005) Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 16:347–353

    PubMed  CAS  Google Scholar 

  36. Lieberherr M, Grosse B (1994) Androgens increase intracellular calcium concentration and inositol 1, 4, 5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem 269:7217–7223

    PubMed  CAS  Google Scholar 

  37. Benten WP, Lieberherr M, Giese G, Wunderlich F (1998) Estradiol binding to cell surface raises cytosolic free calcium in T cells. FEBS Lett 422:349–353

    PubMed  CAS  Google Scholar 

  38. Kelly MJ, Lagrange AH, Wagner EJ, Ronnekleiv OK (1999) Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64:64–75

    PubMed  CAS  Google Scholar 

  39. Estrada M, Espinosa A, Muller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144:3586–3597

    PubMed  CAS  Google Scholar 

  40. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    PubMed  CAS  Google Scholar 

  41. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165–190

    PubMed  CAS  Google Scholar 

  42. Prossnitz ER, Arterburn JB, Sklar LA (2007) GPR30: A G protein-coupled receptor for estrogen. Mol Cell Endocrinol 265–266:138–142

    PubMed  Google Scholar 

  43. Luttrell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ (1996) Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 271:19443–19450

    PubMed  CAS  Google Scholar 

  44. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    PubMed  CAS  Google Scholar 

  45. Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726–741

    PubMed  CAS  Google Scholar 

  46. Meng TC, Lee MS, Lin MF (2000) Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene 19:2664–2677

    PubMed  CAS  Google Scholar 

  47. Meyer G, Feldman EL (2002) Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 83:490–503

    PubMed  CAS  Google Scholar 

  48. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE (2007) Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia 12:143–152

    PubMed  Google Scholar 

  49. Yamazaki D, Kurisu S, Takenawa T (2005) Regulation of cancer cell motility through actin reorganization. Cancer Sci 96:379–386

    PubMed  CAS  Google Scholar 

  50. Giretti MS, Simoncini T (2008) Rapid regulatory actions of sex steroids on cell movement through the actin cytoskeleton. Steroids 73:895–900

    PubMed  CAS  Google Scholar 

  51. Giretti MS, Fu XD, De Rosa G, Sarotto I, Baldacci C, Garibaldi S, Mannella P, Biglia N, Sismondi P, Genazzani AR, Simoncini T (2008) Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal remodelling, migration and invasion. PLoS One 3:e2238

    PubMed  Google Scholar 

  52. Fu XD, Giretti MS, Goglia L, Flamini MI, Sanchez AM, Baldacci C, Garibaldi S, Sitruk-Ware R, Genazzani AR, Simoncini T (2008) Comparative actions of progesterone, medroxyprogesterone acetate, drospirenone and nestorone on breast cancer cell migration and invasion. BMC Cancer 8:166

    PubMed  Google Scholar 

  53. Louvet-Vallee S (2000) ERM proteins: from cellular architecture to cell signaling. Biol Cell 92:305–316

    PubMed  CAS  Google Scholar 

  54. Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274:34507–34510

    PubMed  CAS  Google Scholar 

  55. Sarrio D, Rodriguez-Pinilla SM, Dotor A, Calero F, Hardisson D, Palacios J (2006) Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Treat 98:71–79

    PubMed  CAS  Google Scholar 

  56. McGowan EM, Weinberger RP, Graham JD, Hill HD, Hughes JA, O’Neill GM, Clarke CL (2003) Cytoskeletal responsiveness to progestins is dependent on progesterone receptor A levels. J Mol Endocrinol 31:241–253

    PubMed  CAS  Google Scholar 

  57. Ridley AJ, Allen WE, Peppelenbosch M, Jones GE (1999) Rho family proteins and cell migration. Biochem Soc Symp 65:111–123

    PubMed  CAS  Google Scholar 

  58. Jiang P, Enomoto A, Takahashi M (2009) Cell biology of the movement of breast cancer cells: intracellular signalling and the actin cytoskeleton. Cancer Lett 284:122–130

    PubMed  CAS  Google Scholar 

  59. Lu Q, Longo FM, Zhou H, Massa SM, Chen YH (2009) Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 16:1355–1365

    PubMed  CAS  Google Scholar 

  60. Azios NG, Krishnamoorthy L, Harris M, Cubano LA, Cammer M, Dharmawardhane SF (2007) Estrogen and resveratrol regulate Rac and Cdc42 signaling to the actin cytoskeleton of metastatic breast cancer cells. Neoplasia 9:147–158

    PubMed  CAS  Google Scholar 

  61. Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi (2010) RK Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 70:4092–4101

    PubMed  CAS  Google Scholar 

  62. Vadlamudi RK, Kumar R (2007) Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR. Nucl Recept Signal 5:e004

    PubMed  Google Scholar 

  63. Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS, Rutledge S, Mekonnen B, Hauze D, Nagpal S, Freedman LP (2008) MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids 73:901–905

    PubMed  CAS  Google Scholar 

  64. Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK (2004) Potential role of a novel transcriptional coactivator PELP1 in histone H1 displacement in cancer cells. Cancer Res 64:6416–6423

    PubMed  CAS  Google Scholar 

  65. Romer LH, Birukov KG, Garcia JG (2006) Focal adhesions: paradigm for a signaling nexus. Circ Res 98:606–616

    PubMed  CAS  Google Scholar 

  66. van Nimwegen MJ, van de Water B (2007) Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 73:597–609

    PubMed  Google Scholar 

  67. Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC, Geradts J, Iacocca M, Cowan D, Little D, Craven RJ, Cance W (2005) High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol 18:1289–1294

    PubMed  CAS  Google Scholar 

  68. Luo M, Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289:127–139

    PubMed  CAS  Google Scholar 

  69. Fong YC, Liu SC, Huang CY, Li TM, Hsu SF, Kao ST, Tsai FJ, Chen WC, Chen CY, Tang CH (2009) Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer 64:263–270

    PubMed  Google Scholar 

  70. Hu XW, Meng D, Fang J (2008) Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis 29:2369–2376

    PubMed  CAS  Google Scholar 

  71. Kaneda T, Sonoda Y, Ando K, Suzuki T, Sasaki Y, Oshio T, Tago M, Kasahara T (2008) Mutation of Y925F in focal adhesion kinase (FAK) suppresses melanoma cell proliferation and metastasis. Cancer Lett 270:354–361

    PubMed  CAS  Google Scholar 

  72. van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65:4698–4706

    PubMed  Google Scholar 

  73. Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, Wicha MS, Guan JL (2009) Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69:466–474

    PubMed  CAS  Google Scholar 

  74. Pylayeva Y, Gillen KM, Gerald W, Beggs HE, Reichardt LF, Giancotti FG (2009) Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest 119:252–266

    PubMed  CAS  Google Scholar 

  75. Lin VC, Ng EH, Aw SE, Tan MG, Bay BH (2000) ProgesteroneProgesterone induces focal adhesion in breast cancer cells MDA-MB-231 transfected with progesterone receptor complementary DNA. Mol Endocrinol 14:348–358

    PubMed  CAS  Google Scholar 

  76. Lin VC, Woon CT, Aw SE, Guo C (2003) Distinct molecular pathways mediate progesterone-induced growth inhibition and focal adhesion. Endocrinology 144:5650–5657

    PubMed  CAS  Google Scholar 

  77. Fu XD, Goglia L, Sanchez AM, Flamini M, Giretti MS, Tosi V, Genazzani AR, Simoncini T (2010) Progesterone receptor enhances breast cancer cell motility and invasion via extranuclear activation of focal adhesion kinase. Endocr Relat Cancer 17:431–443

    PubMed  CAS  Google Scholar 

  78. Azios NG, Dharmawardhane SF (2005) Resveratrol and estradiol exert disparate effects on cell migration, cell surface actin structures, and focal adhesion assembly in MDA-MB-231 human breast cancer cells. Neoplasia 7:128–140

    PubMed  CAS  Google Scholar 

  79. Kublickiene K, Fu XD, Svedas E, Landgren BM, Genazzani AR, Simoncini T (2008) Effects in postmenopausal women of estradiol and medroxyprogesterone alone and combined on resistance artery function and endothelial morphology and movement. J Clin Endocrinol Metab 93:1874–1883

    PubMed  CAS  Google Scholar 

  80. Ishida H, Wada K, Masuda T, Okura M, Kohama K, Sano Y, Nakajima A, Kogo M, Kamisaki Y (2007) Critical role of estrogen receptor on anoikis and invasion of squamous cell carcinoma. Cancer Sci 98:636–643

    PubMed  CAS  Google Scholar 

  81. Bartholomew PJ, Vinci JM, DePasquale JA (1998) Decreased tyrosine phosphorylation of focal adhesion kinase after estradiol treatment of MCF-7 human breast carcinoma cells. J Steroid Biochem Mol Biol 67:241–249

    PubMed  CAS  Google Scholar 

  82. Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T (2010) Estrogen receptor-{alpha} promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 24:2114–2125

    PubMed  CAS  Google Scholar 

  83. Matsumoto K, Nakamura T, Kramer RH (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269:31807–31813

    PubMed  CAS  Google Scholar 

  84. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767

    PubMed  CAS  Google Scholar 

  85. Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC (1999) Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 274:12361–12366

    PubMed  CAS  Google Scholar 

  86. Thamilselvan V, Craig DH, Basson MD (2007) FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway. FASEB J 21:1730–1741

    PubMed  CAS  Google Scholar 

  87. Bailly M, Macaluso F, Cammer M, Chan A, Segall JE, Condeelis JS (1999) Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J Cell Biol 145:331–345

    PubMed  CAS  Google Scholar 

  88. Higgs HN, Blanchoin L, Pollard TD (1999) Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38:15212–15222

    PubMed  CAS  Google Scholar 

  89. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A 95:6181–6186

    PubMed  CAS  Google Scholar 

  90. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    PubMed  CAS  Google Scholar 

  91. Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL (2004) Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem 279:9565–9576

    PubMed  CAS  Google Scholar 

  92. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    PubMed  CAS  Google Scholar 

  93. Flynn JF, Wong C, Wu JM (2009) Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol 2009:526963

    PubMed  Google Scholar 

  94. Sabe H, Hashimoto S, Morishige M, Ogawa E, Hashimoto A, Nam JM, Miura K, Yano H, Onodera Y (2009) The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic 10:982–993

    PubMed  CAS  Google Scholar 

  95. Kedrin D, Wyckoff J, Boimel PJ, Coniglio SJ, Hynes NE, Arteaga CL, Segall JE (2009) ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res 15:3733–3739

    PubMed  CAS  Google Scholar 

  96. Cristofanilli M, Valero V, Mangalik A, Royce M, Rabinowitz I, Arena FP, Kroener JF, Curcio E, Watkins C, Bacus S, Cora EM, Anderson E, Magill PJ (2010) Phase II, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer. Clin Cancer Res 16:1904–1914

    PubMed  CAS  Google Scholar 

  97. Filardo EJ, Quinn JA, Sabo E (2008) Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor. Steroids 73:870–873

    PubMed  CAS  Google Scholar 

  98. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, Schnitt SJ (2000) Prognostic factors in breast cancer. College of american pathologists consensus statement 1999. Arch Pathol Lab Med 124:966–978

    PubMed  CAS  Google Scholar 

  99. Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D (2009) Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 28:523–532

    PubMed  Google Scholar 

  100. Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T (2010) Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87–96

    PubMed  CAS  Google Scholar 

  101. Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci U S A 101:2076–2081

    PubMed  CAS  Google Scholar 

  102. Pietras RJ (2003) Interactions between estrogen and growth factor receptors in human breast cancer and the tumor-associated vasculature. Breast J 9:361–373

    PubMed  CAS  Google Scholar 

  103. Song RX, Chen Y, Zhang Z, Bao Y, Yue W, Wang JP, Fan P, Santen RJ (2010) Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol 118:219–230

    PubMed  CAS  Google Scholar 

  104. Migliaccio A, Castoria G, Di Domenico M, Ciociola A, Lombardi M, De Falco A, Nanayakkara M, Bottero D, De Stasio R, Varricchio L, Auricchio F (2006) Crosstalk between EGFR and extranuclear steroid receptors. Ann N Y Acad Sci 1089:194–200

    PubMed  CAS  Google Scholar 

  105. Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J (2006) Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 341:73–81

    PubMed  CAS  Google Scholar 

  106. Rahman MA, Senga T, Ito S, Hyodo T, Hasegawa H, Hamaguchi (2010) M S-nitrosylation at cysteine 498 of c-Src tyrosine kinase regulates nitric oxide-mediated cell invasion. J Biol Chem 285:3806–3814

    PubMed  CAS  Google Scholar 

  107. Hinton CV, Avraham S, Avraham HK (2010) Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis 27:97–105

    PubMed  CAS  Google Scholar 

  108. Ali S, Lazennec G (2007) Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev 26:401–420

    PubMed  CAS  Google Scholar 

  109. Bendrik C, Dabrosin C (2009) Estradiol increases IL-8 secretion of normal human breast tissue and breast cancer in vivo. J Immunol 182:371–378

    PubMed  CAS  Google Scholar 

  110. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109:507–515

    PubMed  CAS  Google Scholar 

  111. Seeger H, Wallwiener D, Mueck AO (2006) Different effects of estradiol and various antiestrogens on TNF-alpha-induced changes of biochemical markers for growth and invasion of human breast cancerbreast cancer cells. Life Sci 78:1464–1468

    PubMed  CAS  Google Scholar 

  112. Sengupta S, Schiff R, Katzenellenbogen BS (2009) Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. Breast Cancer Res Treat 117:243–251

    PubMed  CAS  Google Scholar 

  113. Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins, and apoptosis. Cell 77:477–478

    PubMed  CAS  Google Scholar 

  114. Hynes RO, Bader BL, Hodivala-Dilke K (1999) Integrins in vascular development. Braz J Med Biol Res 32:501–510

    PubMed  CAS  Google Scholar 

  115. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    PubMed  CAS  Google Scholar 

  116. Sisci D, Middea E, Morelli C, Lanzino M, Aquila S, Rizza P, Catalano S, Casaburi I, Maggiolini M, Ando S 17beta-Estradiol enhances alpha(5) integrin subunit gene expression through ERalpha-Sp1 interaction and reduces cell motility and invasion of ERalpha-positive breast cancer cells. Breast Cancer Res Treat

    Google Scholar 

  117. Lindberg K, Strom A, Lock JG, Gustafsson JA, Haldosen LA, Helguero LA (2010) Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells. J Cell Physiol 222:156–167

    PubMed  CAS  Google Scholar 

  118. McGowan EM, Saad S, Bendall LJ, Bradstock KF, Clarke CL (2004) Effect of progesterone receptor a predominance on breast cancer cell migration into bone marrow fibroblasts. Breast Cancer Res Treat 83:211–220

    PubMed  CAS  Google Scholar 

  119. Stevenson LE, Ravichandran KS, Frackelton AR Jr (1999) Shc dominant negative disrupts cell cycle progression in both G0–G1 and G2-M of ErbB2-positive breast cancer cells. Cell Growth Differ 10:61–71

    PubMed  CAS  Google Scholar 

  120. Lee MS, Igawa T, Lin MF (2004) Tyrosine-317 of p52(Shc) mediates androgen-stimulated proliferation signals in human prostate cancer cells. Oncogene 23:3048–3058

    PubMed  CAS  Google Scholar 

  121. Webster MA, Hutchinson JN, Rauh MJ, Muthuswamy SK, Anton M, Tortorice CG, Cardiff RD, Graham FL, Hassell JA, Muller WJ (1998) Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 18:2344–2359

    PubMed  CAS  Google Scholar 

  122. McGlade J, Cheng A, Pelicci G, Pelicci PG, Pawson T (1992) Shc proteins are phosphorylated and regulated by the v-Src and v-Fps protein-tyrosine kinases. Proc Natl Acad Sci U S A 89:8869–8873

    PubMed  CAS  Google Scholar 

  123. Wary KK, Mariotti A, Zurzolo C, Giancotti FG (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634

    PubMed  CAS  Google Scholar 

  124. Thomas D, Bradshaw RA (1997) Differential utilization of ShcA tyrosine residues and functional domains in the transduction of epidermal growth factor-induced mitogen-activated protein kinase activation in 293T cells and nerve growth factor-induced neurite outgrowth in PC12 cells. Identification of a new Grb2.Sos1 binding site. J Biol Chem 272:22293–22299

    PubMed  CAS  Google Scholar 

  125. Collins LR, Ricketts WA, Yeh L, Cheresh D (1999) Bifurcation of cell migratory and proliferative signaling by the adaptor protein Shc. J Cell Biol 147:1561–1568

    PubMed  CAS  Google Scholar 

  126. Zhou MM, Ravichandran KS, Olejniczak EF, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik SW (1995) Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378:584–592

    PubMed  CAS  Google Scholar 

  127. Sato K, Gotoh N, Otsuki T, Kakumoto M, Aoto M, Tokmakov AA, Shibuya M, Fukami Y (1997) Tyrosine residues 239 and 240 of Shc are phosphatidylinositol 4, 5-bisphosphate-dependent phosphorylation sites by c-Src. Biochem Biophys Res Commun 240:399–404

    PubMed  CAS  Google Scholar 

  128. Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O, Nesheiwat I, Kong X, Melamed J, Handratta VD, Njar VC, Brodie AM, Yu LR, Veenstra TD, Chen H, Qiu Y (2006) Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10:309–319

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Simoncini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Flamini, M.I., Sanchez, A.M., Fu, XD., Simoncini, T. (2012). Sex-Steroid Rapid Action and Its Role in Invasiveness and Metastasis of Breast Cancer. In: Castoria, G., Migliaccio, A. (eds) Advances in Rapid Sex-Steroid Action. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1764-4_6

Download citation

Publish with us

Policies and ethics